• 大型开源日志系统比较
    时间:2012-06-29   作者:董的博客   出处:dongxicheng.org

    日志对于系统的安全来说非常重要,它记录了系统每天发生的各种各样的事情,用户可以通过它来检查错误发生的原因,或者寻找受到攻击时攻击者留下的痕迹。日志主要的功能是审计和监测。它还可以实时地监测系统状态,监测和追踪侵入者。 本文将介绍几个开源系统并做比较。

    1. 背景介绍

    许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征:

    (1) 构建应用系统和分析系统的桥梁,并将它们之间的关联解耦;
    (2) 支持近实时的在线分析系统和类似于Hadoop之类的离线分析系统;
    (3) 具有高可扩展性。即:当数据量增加时,可以通过增加节点进行水平扩展。

    本文从设计架构,负载均衡,可扩展性和容错性等方面对比了当今开源的日志系统,包括facebook的scribe,apache的chukwa,linkedin的kafka和cloudera的flume等。

    2. FaceBook的Scribe

    Scribe是facebook开源的日志收集系统,在facebook内部已经得到大量的应用。它能够从各种日志源上收集日志,存储到一个中央存储系统 (可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。

    它最重要的特点是容错性好。当后端的存储系统crash时,scribe会将数据写到本地磁盘上,当存储系统恢复正常后,scribe将日志重新加载到存储系统中。
     scribe
    架构:

    scribe的架构比较简单,主要包括三部分,分别为scribe agent, scribe和存储系统。

    (1) scribe agent
    scribe agent实际上是一个thrift client。 向scribe发送数据的唯一方法是使用thrift client, scribe内部定义了一个thrift接口,用户使用该接口将数据发送给server。
    (2) scribe
    scribe接收到thrift client发送过来的数据,根据配置文件,将不同topic的数据发送给不同的对象。scribe提供了各种各样的store,如 file, HDFS等,scribe可将数据加载到这些store中。
    (3) 存储系统

    存储系统实际上就是scribe中的store,当前scribe支持非常多的store,包括file(文件),buffer(双层存储,一个主储存,一个副存储),network(另一个scribe服务器),bucket(包含多个 store,通过hash的将数据存到不同store中),null(忽略数据),thriftfile(写到一个Thrift TFileTransport文件中)和multi(把数据同时存放到不同store中)。

    3. Apache的Chukwa

    chukwa是一个非常新的开源项目,由于其属于hadoop系列产品,因而使用了很多hadoop的组件(用HDFS存储,用mapreduce处理数据),它提供了很多模块以支持hadoop集群日志分析。

    需求:

    (1) 灵活的,动态可控的数据源
    (2) 高性能,高可扩展的存储系统
    (3) 合适的框架,用于对收集到的大规模数据进行分析
     chukwa
    架构:

    Chukwa中主要有3种角色,分别为:adaptor,agent,collector。
    (1) Adaptor 数据源
    可封装其他数据源,如file,unix命令行工具等
    目前可用的数据源有:hadoop logs,应用程序度量数据,系统参数数据(如linux cpu使用流率)。
    (2) HDFS 存储系统
    Chukwa采用了HDFS作为存储系统。HDFS的设计初衷是支持大文件存储和小并发高速写的应用场景,而日志系统的特点恰好相反,它需支持高并发低速率的写和大量小文件的存储。需要注意的是,直接写到HDFS上的小文件是不可见的,直到关闭文件,另外,HDFS不支持文件重新打开。
    (3) Collector和Agent
    为了克服(2)中的问题,增加了agent和collector阶段。
    Agent的作用:给adaptor提供各种服务,包括:启动和关闭adaptor,将数据通过HTTP传递给Collector;定期记录adaptor状态,以便crash后恢复。
    Collector的作用:对多个数据源发过来的数据进行合并,然后加载到HDFS中;隐藏HDFS实现的细节,如,HDFS版本更换后,只需修改collector即可。
    (4) Demux和achieving
    直接支持利用MapReduce处理数据。它内置了两个mapreduce作业,分别用于获取data和将data转化为结构化的log。存储到data store(可以是数据库或者HDFS等)中。

    4. LinkedIn的Kafka

    Kafka是2010年12月份开源的项目,采用scala语言编写,使用了多种效率优化机制,整体架构比较新颖(push/pull),更适合异构集群。

    设计目标:

    (1) 数据在磁盘上的存取代价为O(1)
    (2) 高吞吐率,在普通的服务器上每秒也能处理几十万条消息
    (3) 分布式架构,能够对消息分区
    (4) 支持将数据并行的加载到hadoop
     kafka
    架构:

    Kafka实际上是一个消息发布订阅系统。producer向某个topic发布消息,而consumer订阅某个topic的消息,进而一旦有新的关于某个topic的消息,broker会传递给订阅它的所有consumer。 在kafka中,消息是按topic组织的,而每个topic又会分为多个partition,这样便于管理数据和进行负载均衡。同时,它也使用了zookeeper进行负载均衡。
    Kafka中主要有三种角色,分别为producer,broker和consumer。

    (1) Producer

    Producer的任务是向broker发送数据。Kafka提供了两种producer接口,一种是low_level接口,使用该接口会向特定的broker的某个topic下的某个partition发送数据;另一种那个是high level接口,该接口支持同步/异步发送数据,基于zookeeper的broker自动识别和负载均衡(基于Partitioner)。

    其中,基于zookeeper的broker自动识别值得一说。producer可以通过zookeeper获取可用的broker列表,也可以在zookeeper中注册listener,该listener在以下情况下会被唤醒:
    a.添加一个broker
    b.删除一个broker
    c.注册新的topic
    d.broker注册已存在的topic

    当producer得知以上时间时,可根据需要采取一定的行动。

    (2) Broker


    Broker采取了多种策略提高数据处理效率,包括sendfile和zero copy等技术。

    (3) Consumer

    consumer的作用是将日志信息加载到中央存储系统上。kafka提供了两种consumer接口,一种是low level的,它维护到某一个broker的连接,并且这个连接是无状态的,即,每次从broker上pull数据时,都要告诉broker数据的偏移量。另一种是high-level 接口,它隐藏了broker的细节,允许consumer从broker上push数据而不必关心网络拓扑结构。更重要的是,对于大部分日志系统而言,consumer已经获取的数据信息都由broker保存,而在kafka中,由consumer自己维护所取数据信息。

    5. Cloudera的Flume

    Flume是cloudera于2009年7月开源的日志系统。它内置的各种组件非常齐全,用户几乎不必进行任何额外开发即可使用。

    设计目标:

    (1) 可靠性

    当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Best effort(数据发送到接收方后,不会进行确认)。

    (2) 可扩展性

    Flume采用了三层架构,分别问agent,collector和storage,每一层均可以水平扩展。其中,所有agent和collector由master统一管理,这使得系统容易监控和维护,且master允许有多个(使用ZooKeeper进行管理和负载均衡),这就避免了单点故障问题。

    (3) 可管理性

    所有agent和colletor由master统一管理,这使得系统便于维护。用户可以在master上查看各个数据源或者数据流执行情况,且可以对各个数据源配置和动态加载。Flume提供了web 和shell script command两种形式对数据流进行管理。

    (4) 功能可扩展性

    用户可以根据需要添加自己的agent,colletor或者storage。此外,Flume自带了很多组件,包括各种agent(file, syslog等),collector和storage(file,HDFS等)。
     flume
    架构:

    正如前面提到的,Flume采用了分层架构,由三层组成,分别为agent,collector和storage。其中,agent和collector均由两部分组成:source和sink,source是数据来源,sink是数据去向。

    (1) agent

    agent的作用是将数据源的数据发送给collector,Flume自带了很多直接可用的数据源(source),如:
    text(“filename”):将文件filename作为数据源,按行发送
    tail(“filename”):探测filename新产生的数据,按行发送出去
    fsyslogTcp(5140):监听TCP的5140端口,并且接收到的数据发送出去
    同时提供了很多sink,如:
    console[("format")] :直接将将数据显示在桌面上
    text(“txtfile”):将数据写到文件txtfile中
    dfs(“dfsfile”):将数据写到HDFS上的dfsfile文件中
    syslogTcp(“host”,port):将数据通过TCP传递给host节点

    (2) collector

    collector的作用是将多个agent的数据汇总后,加载到storage中。它的source和sink与agent类似。
    下面例子中,agent监听TCP的5140端口接收到的数据,并发送给collector,由collector将数据加载到HDFS上。
     flume
    host : syslogTcp(5140) | agentSink("localhost",35853) ;
    collector : collectorSource(35853) | collectorSink("hdfs://namenode/user/flume/ ","syslog");

    一个更复杂的例子如下:

    有6个agent,3个collector,所有collector均将数据导入HDFS中。agent A,B将数据发送给collector A,agent C,D将数据发送给collectorB,agent C,D将数据发送给collectorB。同时,为每个agent添加end-to-end可靠性保障(Flume的三种可靠性保障分别由agentE2EChain, agentDFOChain, and agentBEChain实现),如,当collector A出现故障时,agent A和agent B会将数据分别发给collector B和collector C。
     flume
    下面是简写的配置文件片段:

    agentA : src | agentE2EChain("collectorA:35853","collectorB:35853");
    agentB : src | agentE2EChain("collectorA:35853","collectorC:35853");
    agentC : src | agentE2EChain("collectorB:35853","collectorA:35853");
    agentD : src | agentE2EChain("collectorB:35853","collectorC:35853");
    agentE : src | agentE2EChain("collectorC:35853","collectorA:35853");
    agentF : src | agentE2EChain("collectorC:35853","collectorB:35853");
    collectorA : collectorSource(35853) | collectorSink("hdfs://...","src");
    collectorB : collectorSource(35853) | collectorSink("hdfs://...","src");
    collectorC : collectorSource(35853) | collectorSink("hdfs://...","src");


    此外,使用autoE2EChain,当某个collector 出现故障时,Flume会自动探测一个可用collector,并将数据定向到这个新的可用collector上。

    (3) storage

    storage是存储系统,可以是一个普通file,也可以是HDFS,HIVE,HBase等。

    6. 总结

    根据这四个系统的架构设计,可以总结出典型的日志系统需具备三个基本组件,分别为agent(封装数据源,将数据源中的数据发送给collector),collector(接收多个agent的数据,并进行汇总后导入后端的store中),store(中央存储系统,应该具有可扩展性和可靠性,应该支持当前非常流行的HDFS)。

    下面表格对比了这四个系统:
     log-system-comapration
    7. 参考资料

    scribe主页:https://github.com/facebook/scribe
    chukwa主页:http://incubator.apache.org/chukwa/
    kafka主页:http://sna-projects.com/kafka/
    Flume主页:https://github.com/cloudera/flume/

    网友留言/评论

    我要留言/评论

    相关文章

    扩充分布式系统Hadoop的强大工具组合:Apache基金会规划的Hadoop体系中还有许多牛B的周边方案,如可支持SQL语法的Hive,不懂Java也能撰写MapReduce的Pig,这些都是开发者不能错过的Hadoop相关方案哦。
    Redis学习之主从复制介绍:redis主从复制配置和使用都非常简单。通过主从复制可以允许多个slave server拥有和master server相同的数据库副本。
    Redis学习之Sorted-Sets数据类型介绍:redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)和zset(有序集合)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。本文将介绍Redis之Sorted-Sets数据类型。
    使用Memcache存储一些注意点:Memcache使用了Slab Allocator的内存分配机制:按照预先规定的大小,将分配的内存分割成特定长度的块,以完全解决内存碎片问题
    浅谈Squid在图片存储架构中的应用:将近快一个月没写文章了,太懒散了,今天振作了一下,写了篇关于Squid的文章,Squid作为分布式代理缓存服务器真的非常的棒,希望本文对你有帮助。
    运维必须要知道的几个 Linux 服务器监控命令:如果你是个运维管理同学,如果你想知道你的服务器正在做干什么,你就需要了解一些基本的命令,一旦你精通了这些命令,那你就是一个 专业的 Linux 系统管理员。
    SMTP的相关流程和命令介绍:SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。SMTP协议属于TCP/IP协议族,它帮助每台计算机在发送或中转信件时找到下一个目的地。通过SMTP协议所指定的服务器,就可以把E-mail寄到收信人的服务器上了,整个过程只要几分钟。SMTP服务器则是遵循SMTP协议的发送邮件服务器,用来发送或中转发出的电子邮件。
    基于Facebook和Flash平台的应用架构解析(三):Flash平台可帮助你构建富用户体验的应用,而Facebook平台可帮助你构建富社会化体验的应用。将二者合而为一,你就可以构建高交互性、富于表现力,并融入了社会化功能的杀手级应用了。
    基于Facebook和Flash平台的应用架构解析(二):Flash平台可帮助你构建富用户体验的应用,而Facebook平台可帮助你构建富社会化体验的应用。将二者合而为一,你就可以构建高交互性、富于表现力,并融入了社会化功能的杀手级应用了。
    基于Facebook和Flash平台的应用架构解析(一):Flash平台可帮助你构建富用户体验的应用,而Facebook平台可帮助你构建富社会化体验的应用。将二者合而为一,你就可以构建高交互性、富于表现力,并融入了社会化功能的杀手级应用了。