
perlfaq9 - Networking ($Revision: 1.16 $, $Date: 2004/10/30 12:20:59 $)

This section deals with questions related to networking, the internet, and a few on the web.

(Alan Flavell <flavell+www@a5.ph.gla.ac.uk> answers...)

The Common Gateway Interface (CGI) specifies a software interface between a program ("CGI
script") and a web server (HTTPD). It is not specific to Perl, and has its own FAQs and tutorials, and
usenet group, comp.infosystems.www.authoring.cgi

The original CGI specification is at: http://hoohoo.ncsa.uiuc.edu/cgi/

Current best-practice RFC draft at: http://CGI-Spec.Golux.Com/

Other relevant documentation listed in: http://www.perl.org/CGI_MetaFAQ.html

These Perl FAQs very selectively cover some CGI issues. However, Perl programmers are strongly
advised to use the CGI.pm module, to take care of the details for them.

The similarity between CGI response headers (defined in the CGI specification) and HTTP response
headers (defined in the HTTP specification, RFC2616) is intentional, but can sometimes be confusing.

The CGI specification defines two kinds of script: the "Parsed Header" script, and the "Non Parsed
Header" (NPH) script. Check your server documentation to see what it supports. "Parsed Header"
scripts are simpler in various respects. The CGI specification allows any of the usual newline
representations in the CGI response (it's the server's job to create an accurate HTTP response based
on it). So "\n" written in text mode is technically correct, and recommended. NPH scripts are more
tricky: they must put out a complete and accurate set of HTTP transaction response headers; the
HTTP specification calls for records to be terminated with carriage-return and line-feed, i.e ASCII
\015\012 written in binary mode.

Using CGI.pm gives excellent platform independence, including EBCDIC systems. CGI.pm selects an
appropriate newline representation ($CGI::CRLF) and sets binmode as appropriate.

Several things could be wrong. You can go through the "Troubleshooting Perl CGI scripts" guide at

If, after that, you can demonstrate that you've read the FAQs and that your problem isn't something
simple that can be easily answered, you'll probably receive a courteous and useful reply to your
question if you post it on comp.infosystems.www.authoring.cgi (if it's something to do with HTTP or
the CGI protocols). Questions that appear to be Perl questions but are really CGI ones that are
posted to comp.lang.perl.misc are not so well received.

The useful FAQs, related documents, and troubleshooting guides are listed in the CGI Meta FAQ:

Use the CGI::Carp module. It replaces and , plus the normal Carp modules , ,
and functions with more verbose and safer versions. It still sends them to the normal server
error log.

Perl version 5.8.6 documentation - perlfaq9

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

What is the correct form of response from a CGI script?

My CGI script runs from the command line but not the browser. (500 Server Error)

How can I get better error messages from a CGI program?

http://www.perl.org/troubleshooting_CGI.html

http://www.perl.org/CGI_MetaFAQ.html

use CGI::Carp;

warn die carp croak
confess



The following use of CGI::Carp also redirects errors to a file of your choice, placed in a BEGIN block
to catch compile-time warnings as well:

You can even arrange for fatal errors to go back to the client browser, which is nice for your own
debugging, but might confuse the end user.

Even if the error happens before you get the HTTP header out, the module will try to take care of this
to avoid the dreaded server 500 errors. Normal warnings still go out to the server error log (or
wherever you've sent them with ) with the application name and date stamp prepended.

The most correct way (albeit not the fastest) is to use HTML::Parser from CPAN. Another mostly
correct way is to use HTML::FormatText which not only removes HTML but also attempts to do a little
simple formatting of the resulting plain text.

Many folks attempt a simple-minded regular expression approach, like , but that fails in
many cases because the tags may continue over line breaks, they may contain quoted
angle-brackets, or HTML comment may be present. Plus, folks forget to convert entities--like for
example.

Here's one "simple-minded" approach, that works for most files:

If you want a more complete solution, see the 3-stage striphtml program in
http://www.cpan.org/authors/Tom_Christiansen/scripts/striphtml.gz .

Here are some tricky cases that you should think about when picking a solution:

Perl version 5.8.6 documentation - perlfaq9

Page 2http://perldoc.perl.org

warn "This is a complaint";
die "But this one is serious";

BEGIN {
use CGI::Carp qw(carpout);
open(LOG, ">>/var/local/cgi-logs/mycgi-log")

or die "Unable to append to mycgi-log: $!\n";
carpout(*LOG);

}

use CGI::Carp qw(fatalsToBrowser);
die "Bad error here";

#!/usr/bin/perl -p0777
s/<(?:[^>’"]*|([’"]).*?\1)*>//gs

<IMG SRC = "foo.gif" ALT = "A > B">

<IMG SRC = "foo.gif"
ALT = "A > B">

<!-- <A comment> -->

<script>if (a<b && a>c)</script>

<# Just data #>

<![INCLUDE CDATA [ >>>>>>>>>>>> ]]>

carpout

s/<.*?>//g

&lt;

How do I remove HTML from a string?



If HTML comments include other tags, those solutions would also break on text like this:

You can easily extract all sorts of URLs from HTML with which handles
anchors, images, objects, frames, and many other tags that can contain a URL. If you need anything
more complex, you can create your own subclass of or . You
might even use as an example for something specifically suited to your
needs.

You can use URI::Find to extract URLs from an arbitrary text document.

Less complete solutions involving regular expressions can save you a lot of processing time if you
know that the input is simple. One solution from Tom Christiansen runs 100 times faster than most
module based approaches but only extracts URLs from anchors where the first attribute is HREF and
there are no other attributes.

In this case, download means to use the file upload feature of HTML forms. You allow the web surfer
to specify a file to send to your web server. To you it looks like a download, and to the user it looks
like an upload. No matter what you call it, you do it with what's known as
encoding. The CGI.pm module (which comes with Perl as part of the Standard Library) supports this
in the start_multipart_form() method, which isn't the same as the startform() method.

See the section in the CGI.pm documentation on file uploads for code examples and details.

Use the and tags. The CGI.pm module (available from CPAN) supports this
widget, as well as many others, including some that it cleverly synthesizes on its own.

One approach, if you have the lynx text-based HTML browser installed on your system, is this:

The libwww-perl (LWP) modules from CPAN provide a more powerful way to do this. They don't
require lynx, but like lynx, can still work through proxies:

Perl version 5.8.6 documentation - perlfaq9

Page 3http://perldoc.perl.org

<!-- This section commented out.
<B>You can’t see me!</B>

-->

#!/usr/bin/perl -n00
# qxurl - tchrist@perl.com
print "$2\n" while m{

< \s*
A \s+ HREF \s* = \s* (["’]) (.*?) \1

\s* >
}gsix;

$html_code = ‘lynx -source $url‘;
$text_data = ‘lynx -dump $url‘;

# simplest version
use LWP::Simple;
$content = get($URL);

# or print HTML from a URL
use LWP::Simple;

How do I extract URLs?

How do I download a file from the user's machine? How do I open a file on another machine?

How do I make a pop-up menu in HTML?

How do I fetch an HTML file?

HTML::SimpleLinkExtor

HTML::LinkExtor HTML::Parser
HTML::SimpleLinkExtor

multipart/form-data

<SELECT> <OPTION>



If you're submitting values using the GET method, create a URL and encode the form using the
method:

If you're using the POST method, create your own user agent and encode the content appropriately.

If you are writing a CGI script, you should be using the CGI.pm module that comes with perl, or some
other equivalent module. The CGI module automatically decodes queries for you, and provides an
escape() function to handle encoding.

The best source of detailed information on URI encoding is RFC 2396. Basically, the following
substitutions do it:

However, you should only apply them to individual URI components, not the entire URI, otherwise
you'll lose information and generally mess things up. If that didn't explain it, don't worry. Just go read
section 2 of the RFC, it's probably the best explanation there is.

RFC 2396 also contains a lot of other useful information, including a regexp for breaking any arbitrary
URI into components (Appendix B).

Perl version 5.8.6 documentation - perlfaq9

Page 4http://perldoc.perl.org

getprint "http://www.linpro.no/lwp/";

# or print ASCII from HTML from a URL
# also need HTML-Tree package from CPAN
use LWP::Simple;
use HTML::Parser;
use HTML::FormatText;
my ($html, $ascii);
$html = get("http://www.perl.com/");
defined $html

or die "Can’t fetch HTML from http://www.perl.com/";
$ascii = HTML::FormatText->new->format(parse_html($html));
print $ascii;

use LWP::Simple;
use URI::URL;

my $url = url(’http://www.perl.com/cgi-bin/cpan_mod’);
$url->query_form(module => ’DB_File’, readme => 1);
$content = get($url);

use HTTP::Request::Common qw(POST);
use LWP::UserAgent;

$ua = LWP::UserAgent->new();
my $req = POST ’http://www.perl.com/cgi-bin/cpan_mod’,

[ module => ’DB_File’, readme => 1 ];
$content = $ua->request($req)->as_string;

s/([^\w()’*~!.-])/sprintf ’%%%02x’, ord $1/eg; # encode

s/%([A-Fa-f\d]{2})/chr hex $1/eg; # decode

How do I automate an HTML form submission?

How do I decode or create those %-encodings on the web?

query_form



Specify the complete URL of the destination (even if it is on the same server). This is one of the two
different kinds of CGI "Location:" responses which are defined in the CGI specification for a Parsed
Headers script. The other kind (an absolute URLpath) is resolved internally to the server without any
HTTP redirection. The CGI specifications do not allow relative URLs in either case.

Use of CGI.pm is strongly recommended. This example shows redirection with a complete URL. This
redirection is handled by the web browser.

This example shows a redirection with an absolute URLpath. This redirection is handled by the local
web server.

But if coded directly, it could be as follows (the final "\n" is shown separately, for clarity), using either a
complete URL or an absolute URLpath.

To enable authentication for your web server, you need to configure your web server. The
configuration is different for different sorts of web servers---apache does it differently from iPlanet
which does it differently from IIS. Check your web server documentation for the details for your
particular server.

The HTTPD::UserAdmin and HTTPD::GroupAdmin modules provide a consistent OO interface to
these files, regardless of how they're stored. Databases may be text, dbm, Berkeley DB or any
database with a DBI compatible driver. HTTPD::UserAdmin supports files used by the `Basic' and
`Digest' authentication schemes. Here's an example:

See the security references listed in the CGI Meta FAQ

For a quick-and-dirty solution, try this solution derived from :

Perl version 5.8.6 documentation - perlfaq9

Page 5http://perldoc.perl.org

How do I redirect to another page?

How do I put a password on my web pages?

How do I edit my .htpasswd and .htgroup files with Perl?

How do I make sure users can't enter values into a form that cause my CGI script to do bad
things?

How do I parse a mail header?

use CGI qw/:standard/;

my $url = ’http://www.cpan.org/’;
print redirect($url);

my $url = ’/CPAN/index.html’;
print redirect($url);

print "Location: $url\n"; # CGI response header
print "\n"; # end of headers

use HTTPD::UserAdmin ();
HTTPD::UserAdmin
->new(DB => "/foo/.htpasswd")
->add($username => $password);

http://www.perl.org/CGI_MetaFAQ.html

$/ = ’’;
$header = <MSG>;
$header =~ s/\n\s+/ /g; # merge continuation lines

"split" in perlfunc



That solution doesn't do well if, for example, you're trying to maintain all the Received lines. A more
complete approach is to use the Mail::Header module from CPAN (part of the MailTools package).

You use a standard module, probably CGI.pm. Under no circumstances should you attempt to do so
by hand!

You'll see a lot of CGI programs that blindly read from STDIN the number of bytes equal to
CONTENT_LENGTH for POSTs, or grab QUERY_STRING for decoding GETs. These programs are
very poorly written. They only work sometimes. They typically forget to check the return value of the
read() system call, which is a cardinal sin. They don't handle HEAD requests. They don't handle
multipart forms used for file uploads. They don't deal with GET/POST combinations where query
fields are in more than one place. They don't deal with keywords in the query string.

In short, they're bad hacks. Resist them at all costs. Please do not be tempted to reinvent the wheel.
Instead, use the CGI.pm or CGI_Lite.pm (available from CPAN), or if you're trapped in the
module-free land of perl1 .. perl4, you might look into cgi-lib.pl (available from
http://cgi-lib.stanford.edu/cgi-lib/ ).

Make sure you know whether to use a GET or a POST in your form. GETs should only be used for
something that doesn't update the server. Otherwise you can get mangled databases and repeated
feedback mail messages. The fancy word for this is ``idempotency''. This simply means that there
should be no difference between making a GET request for a particular URL once or multiple times.
This is because the HTTP protocol definition says that a GET request may be cached by the browser,
or server, or an intervening proxy. POST requests cannot be cached, because each request is
independent and matters. Typically, POST requests change or depend on state on the server (query
or update a database, send mail, or purchase a computer).

You can't, at least, not in real time. Bummer, eh?

Without sending mail to the address and seeing whether there's a human on the other end to answer
you, you cannot determine whether a mail address is valid. Even if you apply the mail header
standard, you can have problems, because there are deliverable addresses that aren't RFC-822 (the
mail header standard) compliant, and addresses that aren't deliverable which are compliant.

You can use the Email::Valid or RFC::RFC822::Address which check the format of the address,
although they cannot actually tell you if it is a deliverable address (i.e. that mail to the address will not
bounce). Modules like Mail::CheckUser and Mail::EXPN try to interact with the domain name system
or particular mail servers to learn even more, but their methods do not work everywhere---especially
for security conscious administrators.

Many are tempted to try to eliminate many frequently-invalid mail addresses with a simple regex, such
as . It's a very bad idea. However, this also throws out many
valid ones, and says nothing about potential deliverability, so it is not suggested. Instead, see
http://www.cpan.org/authors/Tom_Christiansen/scripts/ckaddr.gz , which actually checks against the
full RFC spec (except for nested comments), looks for addresses you may not wish to accept mail to
(say, Bill Clinton or your postmaster), and then makes sure that the hostname given can be looked up
in the DNS MX records. It's not fast, but it works for what it tries to do.

Our best advice for verifying a person's mail address is to have them enter their address twice, just as
you normally do to change a password. This usually weeds out typos. If both versions match, send
mail to that address with a personal message that looks somewhat like:

Perl version 5.8.6 documentation - perlfaq9

Page 6http://perldoc.perl.org

%head = ( UNIX_FROM_LINE, split /^([-\w]+):\s*/m, $header );

Dear someuser@host.com,

How do I decode a CGI form?

How do I check a valid mail address?

/^[\w.-]+\@(?:[\w-]+\.)+\w+$/



If you get the message back and they've followed your directions, you can be reasonably assured that
it's real.

A related strategy that's less open to forgery is to give them a PIN (personal ID number). Record the
address and PIN (best that it be a random one) for later processing. In the mail you send, ask them to
include the PIN in their reply. But if it bounces, or the message is included via a ``vacation'' script, it'll
be there anyway. So it's best to ask them to mail back a slight alteration of the PIN, such as with the
characters reversed, one added or subtracted to each digit, etc.

The MIME-Base64 package (available from CPAN) handles this as well as the MIME/QP encoding.
Decoding BASE64 becomes as simple as:

The MIME-Tools package (available from CPAN) supports extraction with decoding of BASE64
encoded attachments and content directly from email messages.

If the string to decode is short (less than 84 bytes long) a more direct approach is to use the unpack()
function's "u" format after minor transliterations:

On systems that support getpwuid, the $< variable, and the Sys::Hostname module (which is part of
the standard perl distribution), you can probably try using something like this:

Company policies on mail address can mean that this generates addresses that the company's mail
system will not accept, so you should ask for users' mail addresses when this matters. Furthermore,
not all systems on which Perl runs are so forthcoming with this information as is Unix.

The Mail::Util module from CPAN (part of the MailTools package) provides a mailaddress() function
that tries to guess the mail address of the user. It makes a more intelligent guess than the code
above, using information given when the module was installed, but it could still be incorrect. Again,
the best way is often just to ask the user.

Use the program directly:

Perl version 5.8.6 documentation - perlfaq9

Page 7http://perldoc.perl.org

Please confirm the mail address you gave us Wed May 6 09:38:41
MDT 1998 by replying to this message. Include the string
"Rumpelstiltskin" in that reply, but spelled in reverse; that is,
start with "Nik...". Once this is done, your confirmed address will
be entered into our records.

use MIME::Base64;
$decoded = decode_base64($encoded);

tr#A-Za-z0-9+/##cd; # remove non-base64 chars
tr#A-Za-z0-9+/# -_#; # convert to uuencoded format
$len = pack("c", 32 + 0.75*length); # compute length byte
print unpack("u", $len . $_); # uudecode and print

use Sys::Hostname;
$address = sprintf(’%s@%s’, scalar getpwuid($<), hostname);

open(SENDMAIL, "|/usr/lib/sendmail -oi -t -odq")
or die "Can’t fork for sendmail: $!\n";

print SENDMAIL <<"EOF";
From: User Originating Mail <me\@host>

How do I decode a MIME/BASE64 string?

How do I return the user's mail address?

How do I send mail?
sendmail



The option prevents sendmail from interpreting a line consisting of a single dot as "end of
message". The option says to use the headers to decide who to send the message to, and
says to put the message into the queue. This last option means your message won't be immediately
delivered, so leave it out if you want immediate delivery.

Alternate, less convenient approaches include calling mail (sometimes called mailx) directly or simply
opening up port 25 have having an intimate conversation between just you and the remote SMTP
daemon, probably sendmail.

Or you might be able use the CPAN module Mail::Mailer:

The Mail::Internet module uses Net::SMTP which is less Unix-centric than Mail::Mailer, but less
reliable. Avoid raw SMTP commands. There are many reasons to use a mail transport agent like
sendmail. These include queuing, MX records, and security.

This answer is extracted directly from the MIME::Lite documentation. Create a multipart message
(i.e., one with attachments).

Perl version 5.8.6 documentation - perlfaq9

Page 8http://perldoc.perl.org

To: Final Destination <you\@otherhost>
Subject: A relevant subject line

Body of the message goes here after the blank line
in as many lines as you like.
EOF
close(SENDMAIL) or warn "sendmail didn’t close nicely";

use Mail::Mailer;

$mailer = Mail::Mailer->new();
$mailer->open({ From => $from_address,

To => $to_address,
Subject => $subject,

})
or die "Can’t open: $!\n";

print $mailer $body;
$mailer->close();

use MIME::Lite;

### Create a new multipart message:
$msg = MIME::Lite->new(

From =>’me@myhost.com’,
To =>’you@yourhost.com’,
Cc =>’some@other.com, some@more.com’,
Subject =>’A message with 2 parts...’,
Type =>’multipart/mixed’
);

### Add parts (each "attach" has same arguments as "new"):
$msg->attach(Type =>’TEXT’,

Data =>"Here’s the GIF file you wanted"
);

$msg->attach(Type =>’image/gif’,
Path =>’aaa000123.gif’,

-oi
-t -odq

How do I use MIME to make an attachment to a mail message?



MIME::Lite also includes a method for sending these things.

This defaults to using but can be customized to use SMTP via .

While you could use the Mail::Folder module from CPAN (part of the MailFolder package) or the
Mail::Internet module from CPAN (part of the MailTools package), often a module is overkill. Here's a
mail sorter.

Or more succinctly,

The normal way to find your own hostname is to call the program. While sometimes
expedient, this has some problems, such as not knowing whether you've got the canonical name or
not. It's one of those tradeoffs of convenience versus portability.

The Sys::Hostname module (part of the standard perl distribution) will give you the hostname after
which you can find out the IP address (assuming you have working DNS) with a gethostbyname() call.

Perl version 5.8.6 documentation - perlfaq9

Page 9http://perldoc.perl.org

Filename =>’logo.gif’
);

$text = $msg->as_string;

$msg->send;

#!/usr/bin/perl

my(@msgs, @sub);
my $msgno = -1;
$/ = ’’; # paragraph reads
while (<>) {

if (/^From /m) {
/^Subject:\s*(?:Re:\s*)*(.*)/mi;
$sub[++$msgno] = lc($1) || ’’;

}
$msgs[$msgno] .= $_;

}
for my $i (sort { $sub[$a] cmp $sub[$b] || $a <=> $b } (0 .. $#msgs)) {

print $msgs[$i];
}

#!/usr/bin/perl -n00
# bysub2 - awkish sort-by-subject
BEGIN { $msgno = -1 }
$sub[++$msgno] = (/^Subject:\s*(?:Re:\s*)*(.*)/mi)[0] if /^From/m;
$msg[$msgno] .= $_;
END { print @msg[ sort { $sub[$a] cmp $sub[$b] || $a <=> $b } (0 ..

$#msg) ] }

use Socket;
use Sys::Hostname;
my $host = hostname();
my $addr = inet_ntoa(scalar gethostbyname($host || ’localhost’));

sendmail Net::SMTP

How do I read mail?

How do I find out my hostname/domainname/IP address?
‘hostname‘



Probably the simplest way to learn your DNS domain name is to grok it out of /etc/resolv.conf, at least
under Unix. Of course, this assumes several things about your resolv.conf configuration, including
that it exists.

(We still need a good DNS domain name-learning method for non-Unix systems.)

Use the Net::NNTP or News::NNTPClient modules, both available from CPAN. This can make tasks
like fetching the newsgroup list as simple as

LWP::Simple (available from CPAN) can fetch but not put. Net::FTP (also available from CPAN) is
more complex but can put as well as fetch.

A DCE::RPC module is being developed (but is not yet available) and will be released as part of the
DCE-Perl package (available from CPAN). The rpcgen suite, available from CPAN/authors/id/JAKE/,
is an RPC stub generator and includes an RPC::ONC module.

Copyright (c) 1997-2002 Tom Christiansen and Nathan Torkington. All rights reserved.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
You are permitted and encouraged to use this code in your own programs for fun or for profit as you
see fit. A simple comment in the code giving credit would be courteous but is not required.

Perl version 5.8.6 documentation - perlfaq9

Page 10http://perldoc.perl.org

How do I fetch a news article or the active newsgroups?

How do I fetch/put an FTP file?

How can I do RPC in Perl?

perl -MNews::NNTPClient
-e ’print News::NNTPClient->new->list("newsgroups")’

AUTHOR AND COPYRIGHT


