
perlfaq4 - Data Manipulation ($Revision: 1.56 $, $Date: 2004/11/03 22:47:56 $)

This section of the FAQ answers questions related to manipulating numbers, dates, strings, arrays,
hashes, and miscellaneous data issues.

Internally, your computer represents floating-point numbers in binary. Digital (as in powers of two)
computers cannot store all numbers exactly. Some real numbers lose precision in the process. This is
a problem with how computers store numbers and affects all computer languages, not just Perl.

show the gory details of number representations and conversions.

To limit the number of decimal places in your numbers, you can use the printf or sprintf function. See
the for more details.

Your int() is most probably working just fine. It's the numbers that aren't quite what you think.

First, see the above item "Why am I getting long decimals (eg, 19.9499999999999) instead of the
numbers I should be getting (eg, 19.95)?".

For example, this

will in most computers print 0, not 1, because even such simple numbers as 0.6 and 0.2 cannot be
presented exactly by floating-point numbers. What you think in the above as 'three' is really more like
2.9999999999999995559.

Perl only understands octal and hex numbers as such when they occur as literals in your program.
Octal literals in perl must start with a leading "0" and hexadecimal literals must start with a leading
"0x". If they are read in from somewhere and assigned, no automatic conversion takes place. You
must explicitly use oct() or hex() if you want the values converted to decimal. oct() interprets hex
("0x350"), octal ("0350" or even without the leading "0", like "377") and binary ("0b1010") numbers,
while hex() only converts hexadecimal ones, with or without a leading "0x", like "0x255", "3A", "ff", or
"deadbeef". The inverse mapping from decimal to octal can be done with either the "%o" or "%O"
sprintf() formats.

This problem shows up most often when people try using chmod(), mkdir(), umask(), or sysopen(),
which by widespread tradition typically take permissions in octal.

Note the mistake in the first line was specifying the decimal literal 644, rather than the intended octal
literal 0644. The problem can be seen with:

Perl version 5.8.6 documentation - perlfaq4

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

Data: Numbers
Why am I getting long decimals (eg, 19.9499999999999) instead of the numbers I should be
getting (eg, 19.95)?

Why is int() broken?

Why isn't my octal data interpreted correctly?

perlnumber

Floating Point Arithmetic

printf "%.2f", 10/3;

my $number = sprintf "%.2f", 10/3;

print int(0.6/0.2-2), "\n";

chmod(644, $file); # WRONG
chmod(0644, $file); # right

Surely you had not intended - did you? If you want to use numeric literals
as arguments to chmod() et al. then please try to express them as octal constants, that is with a
leading zero and with the following digits restricted to the set 0..7.

Remember that int() merely truncates toward 0. For rounding to a certain number of digits, sprintf() or
printf() is usually the easiest route.

The POSIX module (part of the standard Perl distribution) implements ceil(), floor(), and a number of
other mathematical and trigonometric functions.

In 5.000 to 5.003 perls, trigonometry was done in the Math::Complex module. With 5.004, the
Math::Trig module (part of the standard Perl distribution) implements the trigonometric functions.
Internally it uses the Math::Complex module and some functions can break out from the real axis into
the complex plane, for example the inverse sine of 2.

Rounding in financial applications can have serious implications, and the rounding method used
should be specified precisely. In these cases, it probably pays not to trust whichever system rounding
is being used by Perl, but to instead implement the rounding function you need yourself.

To see why, notice how you'll still have an issue on half-way-point alternation:

Don't blame Perl. It's the same as in C. IEEE says we have to do this. Perl numbers whose absolute
values are integers under 2**31 (on 32 bit machines) will work pretty much like mathematical integers.
Other numbers are not guaranteed.

As always with Perl there is more than one way to do it. Below are a few examples of approaches to
making common conversions between number representations. This is intended to be
representational rather than exhaustive.

Some of the examples below use the Bit::Vector module from CPAN. The reason you might choose
Bit::Vector over the perl built in functions is that it works with numbers of ANY size, that it is optimized
for speed on some operations, and for at least some programmers the notation might be familiar.

How do I convert hexadecimal into decimal

Using perl's built in conversion of 0x notation:

Using the hex function:

Using pack:

Perl version 5.8.6 documentation - perlfaq4

Page 2http://perldoc.perl.org

printf("%#o",644); # prints 01204

printf("%.3f", 3.1415926535); # prints 3.142

use POSIX;
$ceil = ceil(3.5); # 4
$floor = floor(3.5); # 3

for ($i = 0; $i < 1.01; $i += 0.05) { printf "%.1f ",$i}

0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7
0.8 0.8 0.9 0.9 1.0 1.0

$dec = 0xDEADBEEF;

$dec = hex("DEADBEEF");

chmod(01204, $file);

Does Perl have a round() function? What about ceil() and floor()? Trig functions?

How do I convert between numeric representations/bases/radixes?

Using the CPAN module Bit::Vector:

How do I convert from decimal to hexadecimal

Using sprintf:

Using unpack:

Using Bit::Vector:

And Bit::Vector supports odd bit counts:

How do I convert from octal to decimal

Using Perl's built in conversion of numbers with leading zeros:

Using the oct function:

Using Bit::Vector:

How do I convert from decimal to octal

Using sprintf:

Using Bit::Vector:

How do I convert from binary to decimal

Perl 5.6 lets you write binary numbers directly with the 0b notation:

Perl version 5.8.6 documentation - perlfaq4

Page 3http://perldoc.perl.org

$dec = unpack("N", pack("H8", substr("0" x 8 . "DEADBEEF", -8)));

use Bit::Vector;
$vec = Bit::Vector->new_Hex(32, "DEADBEEF");
$dec = $vec->to_Dec();

$hex = sprintf("%X", 3735928559); # upper case A-F
$hex = sprintf("%x", 3735928559); # lower case a-f

$hex = unpack("H*", pack("N", 3735928559));

use Bit::Vector;
$vec = Bit::Vector->new_Dec(32, -559038737);
$hex = $vec->to_Hex();

use Bit::Vector;
$vec = Bit::Vector->new_Dec(33, 3735928559);
$vec->Resize(32); # suppress leading 0 if unwanted
$hex = $vec->to_Hex();

$dec = 033653337357; # note the leading 0!

$dec = oct("33653337357");

use Bit::Vector;
$vec = Bit::Vector->new(32);
$vec->Chunk_List_Store(3, split(//, reverse "33653337357"));
$dec = $vec->to_Dec();

$oct = sprintf("%o", 3735928559);

use Bit::Vector;
$vec = Bit::Vector->new_Dec(32, -559038737);
$oct = reverse join(’’, $vec->Chunk_List_Read(3));

Using oct:

Using pack and ord:

Using pack and unpack for larger strings:

Using Bit::Vector:

How do I convert from decimal to binary

Using sprintf (perl 5.6+):

Using unpack:

Using Bit::Vector:

The remaining transformations (e.g. hex -> oct, bin -> hex, etc.) are left as an exercise to the
inclined reader.

The behavior of binary arithmetic operators depends on whether they're used on numbers or strings.
The operators treat a string as a series of bits and work with that (the string is the bit pattern

). The operators work with the binary form of a number (the number is treated as the bit
pattern).

So, saying performs the "and" operation on numbers (yielding). Saying
performs the "and" operation on strings (yielding).

Most problems with and arise because the programmer thinks they have a number but really it's a
string. The rest arise because the programmer says:

but a string consisting of two null bytes (the result of) is not a false
value in Perl. You need:

Perl version 5.8.6 documentation - perlfaq4

Page 4http://perldoc.perl.org

$number = 0b10110110;

my $input = "10110110";
$decimal = oct("0b$input");

$decimal = ord(pack(’B8’, ’10110110’));

$int = unpack("N", pack("B32",
substr("0" x 32 . "11110101011011011111011101111", -32)));

$dec = sprintf("%d", $int);

substr() is used to left pad a 32 character string with zeros.

$vec = Bit::Vector->new_Bin(32,
"11011110101011011011111011101111");

$dec = $vec->to_Dec();

$bin = sprintf("%b", 3735928559);

$bin = unpack("B*", pack("N", 3735928559));

use Bit::Vector;
$vec = Bit::Vector->new_Dec(32, -559038737);
$bin = $vec->to_Bin();

if ("\020\020" & "\101\101") {
...

}

Why doesn't & work the way I want it to?

"3"
00110011 3

00000011

11 & 3 3 "11" & "3"
"1"

& |

"\020\020" & "\101\101"

Use the Math::Matrix or Math::MatrixReal modules (available from CPAN) or the PDL extension (also
available from CPAN).

To call a function on each element in an array, and collect the results, use:

For example:

To call a function on each element of an array, but ignore the results:

To call a function on each integer in a (small) range, you use:

but you should be aware that the operator creates an array of all integers in the range. This can
take a lot of memory for large ranges. Instead use:

This situation has been fixed in Perl5.005. Use of in a loop will iterate over the range, without
creating the entire range.

will not create a list of 500,000 integers.

Get the http://www.cpan.org/modules/by-module/Roman module.

If you're using a version of Perl before 5.004, you must call once at the start of your program
to seed the random number generator.

5.004 and later automatically call at the beginning. Don't call more than once---you
make your numbers less random, rather than more.

Perl version 5.8.6 documentation - perlfaq4

Page 5http://perldoc.perl.org

if (("\020\020" & "\101\101") !~ /[^\000]/) {
...

}

@results = map { my_func($_) } @array;

@triple = map { 3 * $_ } @single;

foreach $iterator (@array) {
some_func($iterator);

}

@results = map { some_func($_) } (5 .. 25);

@results = ();
for ($i=5; $i < 500_005; $i++) {

push(@results, some_func($i));
}

for my $i (5 .. 500_005) {
push(@results, some_func($i));

}

BEGIN { srand() if $] < 5.004 }

How do I multiply matrices?

How do I perform an operation on a series of integers?

How can I output Roman numerals?

Why aren't my random numbers random?

can

..

.. for

srand

srand srand

Computers are good at being predictable and bad at being random (despite appearances caused by
bugs in your programs :-). see the article in the "Far More Than You Ever Wanted To Know"
collection in http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz , courtesy of Tom Phoenix, talks
more about this. John von Neumann said, ``Anyone who attempts to generate random numbers by
deterministic means is, of course, living in a state of sin.''

If you want numbers that are more random than with provides, you should also check
out the Math::TrulyRandom module from CPAN. It uses the imperfections in your system's timer to
generate random numbers, but this takes quite a while. If you want a better pseudorandom generator
than comes with your operating system, look at ``Numerical Recipes in C'' at http://www.nr.com/ .

returns a number such that . Thus what you want to have perl
figure out is a random number in the range from 0 to the difference between your and .

That is, to get a number between 10 and 15, inclusive, you want a random number between 0 and 5
that you can then add to 10.

Hence you derive the following simple function to abstract that. It selects a random integer between
the two given integers (inclusive), For example: .

The localtime function returns the day of the week. Without an argument localtime uses the current
time.

The POSIX module can also format a date as the day of the year or week of the year.

To get the day of year for any date, use the Time::Local module to get a time in epoch seconds for the
argument to localtime.

The Date::Calc module provides two functions for to calculate these.

Perl version 5.8.6 documentation - perlfaq4

Page 6http://perldoc.perl.org

random

X Y

rand srand

rand($x) 0 <= rand($x) < $x

random_int_in(50,120)

How do I get a random number between X and Y?

How do I find the day or week of the year?

my $number = 10 + int rand(15-10+1);

sub random_int_in ($$) {
my($min, $max) = @_;
Assumes that the two arguments are integers themselves!
return $min if $min == $max;
($min, $max) = ($max, $min) if $min > $max;
return $min + int rand(1 + $max - $min);

}

$day_of_year = (localtime)[7];

use POSIX qw/strftime/;
my $day_of_year = strftime "%j", localtime;
my $week_of_year = strftime "%W", localtime;

use POSIX qw/strftime/;
use Time::Local;
my $week_of_year = strftime "%W",
localtime(timelocal(0, 0, 0, 18, 11, 1987));

use Date::Calc;
my $day_of_year = Day_of_Year(1987, 12, 18);

Data: Dates

Use the following simple functions:

On some systems, the POSIX module's strftime() function has been extended in a non-standard way
to use a format, which they sometimes claim is the "century". It isn't, because on most such
systems, this is only the first two digits of the four-digit year, and thus cannot be used to reliably
determine the current century or millennium.

If you're storing your dates as epoch seconds then simply subtract one from the other. If you've got a
structured date (distinct year, day, month, hour, minute, seconds values), then for reasons of
accessibility, simplicity, and efficiency, merely use either timelocal or timegm (from the Time::Local
module in the standard distribution) to reduce structured dates to epoch seconds. However, if you
don't know the precise format of your dates, then you should probably use either of the Date::Manip
and Date::Calc modules from CPAN before you go hacking up your own parsing routine to handle
arbitrary date formats.

If it's a regular enough string that it always has the same format, you can split it up and pass the parts
to in the standard Time::Local module. Otherwise, you should look into the Date::Calc
and Date::Manip modules from CPAN.

Use the Time::JulianDay module (part of the Time-modules bundle available from CPAN.)

Before you immerse yourself too deeply in this, be sure to verify that it is the Day you really
want. Are you interested in a way of getting serial days so that you just can tell how many days they
are apart or so that you can do also other date arithmetic? If you are interested in performing date
arithmetic, this can be done using modules Date::Manip or Date::Calc.

There is too many details and much confusion on this issue to cover in this FAQ, but the term is
applied (correctly) to a calendar now supplanted by the Gregorian Calendar, with the Julian Calendar
failing to adjust properly for leap years on centennial years (among other annoyances). The term is
also used (incorrectly) to mean: [1] days in the Gregorian Calendar; and [2] days since a particular
starting time or `epoch', usually 1970 in the Unix world and 1980 in the MS-DOS/Windows world. If
you find that it is not the first meaning that you really want, then check out the Date::Manip and
Date::Calc modules. (Thanks to David Cassell for most of this text.)

If you only need to find the date (and not the same time), you can use the Date::Calc module.

Perl version 5.8.6 documentation - perlfaq4

Page 7http://perldoc.perl.org

my $week_of_year = Week_of_Year(1987, 12, 18);

sub get_century {
return int((((localtime(shift || time))[5] + 1999))/100);

}
sub get_millennium {

return 1+int((((localtime(shift || time))[5] + 1899))/1000);
}

use Date::Calc qw(Today Add_Delta_Days);

my @date = Add_Delta_Days(Today(), -1);

print "@date\n";

How do I find the current century or millennium?

How can I compare two dates and find the difference?

How can I take a string and turn it into epoch seconds?

How can I find the Julian Day?

How do I find yesterday's date?

%C

timelocal

Julian

Most people try to use the time rather than the calendar to figure out dates, but that assumes that
your days are twenty-four hours each. For most people, there are two days a year when they aren't:
the switch to and from summer time throws this off. Russ Allbery offers this solution.

Should give you "this time yesterday" in seconds since epoch relative to the first argument or the
current time if no argument is given and suitable for passing to localtime or whatever else you need to
do with it. $ndst is whether we're currently in daylight savings time; $tdst is whether the point 24 hours
ago was in daylight savings time. If $tdst and $ndst are the same, a boundary wasn't crossed, and the
correction will subtract 0. If $tdst is 1 and $ndst is 0, subtract an hour more from yesterday's time
since we gained an extra hour while going off daylight savings time. If $tdst is 0 and $ndst is 1,
subtract a negative hour (add an hour) to yesterday's time since we lost an hour.

All of this is because during those days when one switches off or onto DST, a "day" isn't 24 hours
long; it's either 23 or 25.

The explicit settings of $ndst and $tdst are necessary because localtime only says it returns the
system tm struct, and the system tm struct at least on Solaris doesn't guarantee any particular
positive value (like, say, 1) for isdst, just a positive value. And that value can potentially be negative, if
DST information isn't available (this sub just treats those cases like no DST).

Note that between 2am and 3am on the day after the time zone switches off daylight savings time, the
exact hour of "yesterday" corresponding to the current hour is not clearly defined. Note also that if
used between 2am and 3am the day after the change to daylight savings time, the result will be
between 3am and 4am of the previous day; it's arguable whether this is correct.

This sub does not attempt to deal with leap seconds (most things don't).

Short answer: No, Perl does not have a Year 2000 problem. Yes, Perl is Y2K compliant (whatever
that means). The programmers you've hired to use it, however, probably are not.

Long answer: The question belies a true understanding of the issue. Perl is just as Y2K compliant as
your pencil--no more, and no less. Can you use your pencil to write a non-Y2K-compliant memo? Of
course you can. Is that the pencil's fault? Of course it isn't.

The date and time functions supplied with Perl (gmtime and localtime) supply adequate information to
determine the year well beyond 2000 (2038 is when trouble strikes for 32-bit machines). The year
returned by these functions when used in a list context is the year minus 1900. For years between
1910 and 1999 this to be a 2-digit decimal number. To avoid the year 2000 problem simply
do not treat the year as a 2-digit number. It isn't.

When gmtime() and localtime() are used in scalar context they return a timestamp string that contains
a fully-expanded year. For example, sets $timestamp to
"Tue Nov 13 01:00:00 2001". There's no year 2000 problem here.

That doesn't mean that Perl can't be used to create non-Y2K compliant programs. It can. But so can
your pencil. It's the fault of the user, not the language. At the risk of inflaming the NRA: ``Perl doesn't
break Y2K, people do.'' See http://www.perl.org/about/y2k.html for a longer exposition.

Perl version 5.8.6 documentation - perlfaq4

Page 8http://perldoc.perl.org

sub yesterday {
my $now = defined $_[0] ? $_[0] : time;
my $then = $now - 60 * 60 * 24;
my $ndst = (localtime $now)[8] > 0;
my $tdst = (localtime $then)[8] > 0;
$then - ($tdst - $ndst) * 60 * 60;
}

Does Perl have a Year 2000 problem? Is Perl Y2K compliant?

happens

$timestamp = gmtime(1005613200)

The answer to this question is usually a regular expression, perhaps with auxiliary logic. See the more
specific questions (numbers, mail addresses, etc.) for details.

It depends just what you mean by ``escape''. URL escapes are dealt with in . Shell escapes
with the backslash () character are removed with

This won't expand or or any other special escapes.

To turn into :

Here's a solution that turns "abbcccd" to "abcd":

This is documented in . In general, this is fraught with quoting and readability problems, but it is
possible. To interpolate a subroutine call (in list context) into a string:

See also ``How can I expand variables in text strings?'' in this section of the FAQ.

This isn't something that can be done in one regular expression, no matter how complicated. To find
something between two single characters, a pattern like will get the intervening bits in
$1. For multiple ones, then something more like would be needed. But none
of these deals with nested patterns. For balanced expressions using , , or as delimiters, use the
CPAN module Regexp::Common, or see . For other cases, you'll have to write
a parser.

If you are serious about writing a parser, there are a number of modules or oddities that will make
your life a lot easier. There are the CPAN modules Parse::RecDescent, Parse::Yapp, and
Text::Balanced; and the byacc program. Starting from perl 5.8 the Text::Balanced is part of the
standard distribution.

One simple destructive, inside-out approach that you might try is to pull out the smallest nesting parts
one at a time:

A more complicated and sneaky approach is to make Perl's regular expression engine do it for you.
This is courtesy Dean Inada, and rather has the nature of an Obfuscated Perl Contest entry, but it
really does work:

Perl version 5.8.6 documentation - perlfaq4

Page 9http://perldoc.perl.org

Data: Strings
How do I validate input?

How do I unescape a string?

How do I remove consecutive pairs of characters?

How do I expand function calls in a string?

How do I find matching/nesting anything?

perlfaq9

perlref

"(??{ code })" in perlre

\

"\n" "\t"

"abbcccd" "abccd"

/x([^x]*)x/
/alpha(.*?)omega/

({ [<

s/\\(.)/$1/g;

s/(.)\1/$1/g; # add /s to include newlines

y///cs; # y == tr, but shorter :-)

print "My sub returned @{[mysub(1,2,3)]} that time.\n";

while (s/BEGIN((?:(?!BEGIN)(?!END).)*)END//gs) {
do something with $1

}

$_ contains the string to parse
BEGIN and END are the opening and closing markers for the

Use reverse() in scalar context, as documented in .

You can do it yourself:

Or you can just use the Text::Tabs module (part of the standard Perl distribution).

Use Text::Wrap (part of the standard Perl distribution):

The paragraphs you give to Text::Wrap should not contain embedded newlines. Text::Wrap doesn't
justify the lines (flush-right).

Or use the CPAN module Text::Autoformat. Formatting files can be easily done by making a shell
alias, like so:

See the documentation for Text::Autoformat to appreciate its many capabilities.

You can access the first characters of a string with substr(). To get the first character, for example,
start at position 0 and grab the string of length 1.

To change part of a string, you can use the optional fourth argument which is the replacement string.

You can also use substr() as an lvalue.

Perl version 5.8.6 documentation - perlfaq4

Page 10http://perldoc.perl.org

nested text.

@(= (’(’,’’);
@) = (’)’,’’);
($re=$_)=~s/((BEGIN)|(END)|.)/$)[!$3]\Q$1\E$([!$2]/gs;
@$ = (eval{/$re/},$@!~/unmatched/i);
print join("\n",@$[0..$#$]) if($$[-1]);

$reversed = reverse $string;

1 while $string =~ s/\t+/’ ’ x (length($&) * 8 - length($‘) % 8)/e;

use Text::Tabs;
@expanded_lines = expand(@lines_with_tabs);

use Text::Wrap;
print wrap("\t", ’ ’, @paragraphs);

alias fmt="perl -i -MText::Autoformat -n0777 \
-e ’print autoformat $_, {all=>1}’ $*"

$string = "Just another Perl Hacker";
$first_char = substr($string, 0, 1); # ’J’

substr($string, 13, 4, "Perl 5.8.0");

substr($string, 13, 4) = "Perl 5.8.0";

How do I reverse a string?

How do I expand tabs in a string?

How do I reformat a paragraph?

How can I access or change N characters of a string?

"reverse" in perlfunc

You have to keep track of N yourself. For example, let's say you want to change the fifth occurrence
of or into or , case insensitively. These all
assume that $_ contains the string to be altered.

In the more general case, you can use the modifier in a loop, keeping count of matches.

That prints out: You can also use a repetition count and
repeated pattern like this:

There are a number of ways, with varying efficiency. If you want a count of a certain single character
(X) within a string, you can use the function like so:

This is fine if you are just looking for a single character. However, if you are trying to count multiple
character substrings within a larger string, won't work. What you can do is wrap a while() loop
around a global pattern match. For example, let's count negative integers:

Another version uses a global match in list context, then assigns the result to a scalar, producing a
count of the number of matches.

To make the first letter of each word upper case:

This has the strange effect of turning " " into " ". Sometimes you might

Perl version 5.8.6 documentation - perlfaq4

Page 11http://perldoc.perl.org

$count = 0;
s{((whom?)ever)}{

++$count == 5 # is it the 5th?
? "${2}soever" # yes, swap
: $1 # renege and leave it there
}ige;

$WANT = 3;
$count = 0;
$_ = "One fish two fish red fish blue fish";
while (/(\w+)\s+fish\b/gi) {

if (++$count == $WANT) {
print "The third fish is a $1 one.\n";

}
}

/(?:\w+\s+fish\s+){2}(\w+)\s+fish/i;

$string = "ThisXlineXhasXsomeXx’sXinXit";
$count = ($string =~ tr/X//);
print "There are $count X characters in the string";

$string = "-9 55 48 -2 23 -76 4 14 -44";
while ($string =~ /-\d+/g) { $count++ }
print "There are $count negative numbers in the string";

$count = () = $string =~ /-\d+/g;

$line =~ s/\b(\w)/\U$1/g;

How do I change the Nth occurrence of something?

How can I count the number of occurrences of a substring within a string?

How do I capitalize all the words on one line?

"whoever" "whomever" "whosoever" "whomsoever"

/g while

"The third fish is a red one."

tr///

tr///

don’t do it Don’T Do It

want this. Other times you might need a more thorough solution (Suggested by brian d foy):

To make the whole line upper case:

To force each word to be lower case, with the first letter upper case:

You can (and probably should) enable locale awareness of those characters by placing a
pragma in your program. See for endless details on locales.

This is sometimes referred to as putting something into "title case", but that's not quite accurate.
Consider the proper capitalization of the movie

, for example.

Damian Conway's module provides some smart case transformations:

Several modules can handle this sort of pasing---Text::Balanced, Text::CVS, Text::CVS_XS, and
Text::ParseWords, among others.

Take the example case of trying to split a string that is comma-separated into its different fields. You
can't use because you shouldn't split if the comma is inside quotes. For example, take a
data line like this:

Due to the restriction of the quotes, this is a fairly complex problem. Thankfully, we have Jeffrey
Friedl, author of , to handle these for us. He suggests (assuming your
string is contained in $text):

Perl version 5.8.6 documentation - perlfaq4

Page 12http://perldoc.perl.org

$string =~ s/ (
(^\w) #at the beginning of the line
| # or

(\s\w) #preceded by whitespace
)

/\U$1/xg;
$string =~ /([\w’]+)/\u\L$1/g;

$line = uc($line);

$line =~ s/(\w+)/\u\L$1/g;

use Text::Autoformat;
my $x = "Dr. Strangelove or: How I Learned to Stop ".
"Worrying and Love the Bomb";

print $x, "\n";
for my $style (qw(sentence title highlight))
{

print autoformat($x, { case => $style }), "\n";
}

SAR001,"","Cimetrix, Inc","Bob Smith","CAM",N,8,1,0,7,"Error, Core
Dumped"

@new = ();
push(@new, $+) while $text =~ m{

"([^\"\\]*(?:\\.[^\"\\]*)*)",? # groups the phrase inside the
quotes

| ([^,]+),?

use
locale

split(/,/)

perllocale

Dr. Strangelove or: How I Learned to Stop Worrying
and Love the Bomb

Text::Autoformat

Mastering Regular Expressions

How can I split a [character] delimited string except when inside [character]?

If you want to represent quotation marks inside a quotation-mark-delimited field, escape them with
backslashes (eg, .

Alternatively, the Text::ParseWords module (part of the standard Perl distribution) lets you say:

There's also a Text::CSV (Comma-Separated Values) module on CPAN.

Although the simplest approach would seem to be

not only is this unnecessarily slow and destructive, it also fails with embedded newlines. It is much
faster to do this operation in two steps:

Or more nicely written as:

This idiom takes advantage of the loop's aliasing behavior to factor out common code. You
can do this on several strings at once, or arrays, or even the values of a hash if you use a slice:

In the following examples, is the length to which you wish to pad the string, or
contains the string to be padded, and contains the padding character. You can use

a single character string constant instead of the variable if you know what it is in
advance. And in the same way you can use an integer in place of if you know the pad
length in advance.

The simplest method uses the function. It can pad on the left or right with blanks and on the
left with zeroes and it will not truncate the result. The function can only pad strings on the right
with blanks and it will truncate the result to a maximum length of .

Perl version 5.8.6 documentation - perlfaq4

Page 13http://perldoc.perl.org

| ,
}gx;
push(@new, undef) if substr($text,-1,1) eq ’,’;

use Text::ParseWords;
@new = quotewords(",", 0, $text);

$string =~ s/^\s*(.*?)\s*$/$1/;

$string =~ s/^\s+//;
$string =~ s/\s+$//;

for ($string) {
s/^\s+//;
s/\s+$//;

}

trim whitespace in the scalar, the array,
and all the values in the hash
foreach ($scalar, @array, @hash{keys %hash}) {

s/^\s+//;
s/\s+$//;

}

Left padding a string with blanks (no truncation):
$padded = sprintf("%${pad_len}s", $text);
$padded = sprintf("%*s", $pad_len, $text); # same thing

"like \"this\""

foreach

$pad_len $text
$num $pad_char

$pad_char
$pad_len

sprintf
pack

$pad_len

How do I strip blank space from the beginning/end of a string?

How do I pad a string with blanks or pad a number with zeroes?

If you need to pad with a character other than blank or zero you can use one of the following
methods. They all generate a pad string with the operator and combine that with . These
methods do not truncate .

Left and right padding with any character, creating a new string:

Left and right padding with any character, modifying directly:

Use substr() or unpack(), both documented in . If you prefer thinking in terms of columns
instead of widths, you can use this kind of thing:

Use the standard Text::Soundex module distributed with Perl. Before you do so, you may want to
determine whether `soundex' is in fact what you think it is. Knuth's soundex algorithm compresses
words into a small space, and so it does not necessarily distinguish between two words which you
might want to appear separately. For example, the last names `Knuth' and `Kant' are both mapped to
the soundex code K530. If Text::Soundex does not do what you are looking for, you might want to
consider the String::Approx module available at CPAN.

Perl version 5.8.6 documentation - perlfaq4

Page 14http://perldoc.perl.org

Right padding a string with blanks (no truncation):
$padded = sprintf("%-${pad_len}s", $text);
$padded = sprintf("%-*s", $pad_len, $text); # same thing

Left padding a number with 0 (no truncation):
$padded = sprintf("%0${pad_len}d", $num);
$padded = sprintf("%0*d", $pad_len, $num); # same thing

Right padding a string with blanks using pack (will truncate):
$padded = pack("A$pad_len",$text);

$padded = $pad_char x ($pad_len - length($text)) . $text;
$padded = $text . $pad_char x ($pad_len - length($text));

substr($text, 0, 0) = $pad_char x ($pad_len - length($text));
$text .= $pad_char x ($pad_len - length($text));

determine the unpack format needed to split Linux ps output
arguments are cut columns
my $fmt = cut2fmt(8, 14, 20, 26, 30, 34, 41, 47, 59, 63, 67, 72);

sub cut2fmt {
my(@positions) = @_;
my $template = ’’;
my $lastpos = 1;
for my $place (@positions) {

$template .= "A" . ($place - $lastpos) . " ";
$lastpos = $place;

}
$template .= "A*";
return $template;

}

x $text
$text

$text

How do I extract selected columns from a string?

How do I find the soundex value of a string?

perlfunc

Let's assume that you have a string like:

If those were both global variables, then this would suffice:

But since they are probably lexicals, or at least, they could be, you'd have to do this:

It's probably better in the general case to treat those variables as entries in some special hash. For
example:

See also ``How do I expand function calls in a string?'' in this section of the FAQ.

The problem is that those double-quotes force stringification-- coercing numbers and references into
strings--even when you don't want them to be strings. Think of it this way: double-quote expansion is
used to produce new strings. If you already have a string, why do you need more?

If you get used to writing odd things like these:

You'll be in trouble. Those should (in 99.8% of the cases) be the simpler and more direct:

Otherwise, besides slowing you down, you're going to break code when the thing in the scalar is
actually neither a string nor a number, but a reference:

You can also get into subtle problems on those few operations in Perl that actually do care about the
difference between a string and a number, such as the magical autoincrement operator or the
syscall() function.

Stringification also destroys arrays.

Perl version 5.8.6 documentation - perlfaq4

Page 15http://perldoc.perl.org

How can I expand variables in text strings?

What's wrong with always quoting "$vars"?

$text = ’this has a $foo in it and a $bar’;

$text =~ s/\$(\w+)/${$1}/g; # no /e needed

$text =~ s/(\$\w+)/$1/eeg;
die if $@; # needed /ee, not /e

%user_defs = (
foo => 23,
bar => 19,

);
$text =~ s/\$(\w+)/$user_defs{$1}/g;

print "$var"; # BAD
$new = "$old"; # BAD
somefunc("$var"); # BAD

print $var;
$new = $old;
somefunc($var);

func(\@array);
sub func {

my $aref = shift;
my $oref = "$aref"; # WRONG

}

++

Check for these three things:

There must be no space after the << part.

There (probably) should be a semicolon at the end.

You can't (easily) have any space in front of the tag.

If you want to indent the text in the here document, you can do this:

But the HERE_TARGET must still be flush against the margin. If you want that indented also, you'll
have to quote in the indentation.

A nice general-purpose fixer-upper function for indented here documents follows. It expects to be
called with a here document as its argument. It looks to see whether each line begins with a common
substring, and if so, strips that substring off. Otherwise, it takes the amount of leading whitespace
found on the first line and removes that much off each subsequent line.

This works with leading special strings, dynamically determined:

Perl version 5.8.6 documentation - perlfaq4

Page 16http://perldoc.perl.org

@lines = ‘command‘;
print "@lines"; # WRONG - extra blanks
print @lines; # right

all in one
($VAR = <<HERE_TARGET) =~ s/^\s+//gm;

your text
goes here

HERE_TARGET

($quote = <<’ FINIS’) =~ s/^\s+//gm;
...we will have peace, when you and all your works have
perished--and the works of your dark master to whom you
would deliver us. You are a liar, Saruman, and a corrupter
of men’s hearts. --Theoden in /usr/src/perl/taint.c

FINIS
$quote =~ s/\s+--/\n--/;

sub fix {
local $_ = shift;
my ($white, $leader); # common whitespace and common leading

string
if (/^\s*(?:([^\w\s]+)(\s*).*\n)(?:\s*\1\2?.*\n)+$/) {

($white, $leader) = ($2, quotemeta($1));
} else {

($white, $leader) = (/^(\s+)/, ’’);
}
s/^\s*?$leader(?:$white)?//gm;
return $_;

}

$remember_the_main = fix<<’ MAIN_INTERPRETER_LOOP’;
@@@ int
@@@ runops() {
@@@ SAVEI32(runlevel);
@@@ runlevel++;
@@@ while (op = (*op->op_ppaddr)());

Why don't my <<HERE documents work?

Or with a fixed amount of leading whitespace, with remaining indentation correctly preserved:

An array has a changeable length. A list does not. An array is something you can push or pop, while a
list is a set of values. Some people make the distinction that a list is a value while an array is a
variable. Subroutines are passed and return lists, you put things into list context, you initialize arrays
with lists, and you foreach() across a list. variables are arrays, anonymous arrays are arrays, arrays
in scalar context behave like the number of elements in them, subroutines access their arguments
through the array , and push/pop/shift only work on arrays.

As a side note, there's no such thing as a list in scalar context. When you say

you're using the comma operator in scalar context, so it uses the scalar comma operator. There never
was a list there at all! This causes the last value to be returned: 9.

The former is a scalar value; the latter an array slice, making it a list with one (scalar) value. You
should use $ when you want a scalar value (most of the time) and @ when you want a list with one
scalar value in it (very, very rarely; nearly never, in fact).

Sometimes it doesn't make a difference, but sometimes it does. For example, compare:

with

The pragma and the flag will warn you about these matters.

There are several possible ways, depending on whether the array is ordered and whether you wish to
preserve the ordering.

a)

If @in is sorted, and you want @out to be sorted: (this assumes all true values in the array)

Perl version 5.8.6 documentation - perlfaq4

Page 17http://perldoc.perl.org

@@@ TAINT_NOT;
@@@ return 0;
@@@ }

MAIN_INTERPRETER_LOOP

$poem = fix<<EVER_ON_AND_ON;
Now far ahead the Road has gone,

And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.

And whither then? I cannot say.
--Bilbo in /usr/src/perl/pp_ctl.c
EVER_ON_AND_ON

$scalar = (2, 5, 7, 9);

$good[0] = ‘some program that outputs several lines‘;

@bad[0] = ‘same program that outputs several lines‘;

$prev = "not equal to $in[0]";

Data: Arrays
What is the difference between a list and an array?

What is the difference between $array[1] and @array[1]?

How can I remove duplicate elements from a list or array?

@

@_

use warnings -w

This is nice in that it doesn't use much extra memory, simulating uniq(1)'s behavior of
removing only adjacent duplicates. The ", 1" guarantees that the expression is true (so that
grep picks it up) even if the $_ is 0, "", or undef.

b)

If you don't know whether @in is sorted:

c)

Like (b), but @in contains only small integers:

d)

A way to do (b) without any loops or greps:

e)

Like (d), but @in contains only small positive integers:

But perhaps you should have been using a hash all along, eh?

Hearing the word "in" is an dication that you probably should have used a hash, not a list or array, to
store your data. Hashes are designed to answer this question quickly and efficiently. Arrays aren't.

That being said, there are several ways to approach this. If you are going to make this query many
times over arbitrary string values, the fastest way is probably to invert the original array and maintain
a hash whose keys are the first array's values.

Now you can check whether $is_blue{$some_color}. It might have been a good idea to keep the blues
all in a hash in the first place.

If the values are all small integers, you could use a simple indexed array. This kind of an array will
take up less space:

Now you check whether $is_tiny_prime[$some_number].

Perl version 5.8.6 documentation - perlfaq4

Page 18http://perldoc.perl.org

@out = grep($_ ne $prev && ($prev = $_, 1), @in);

undef %saw;
@out = grep(!$saw{$_}++, @in);

@out = grep(!$saw[$_]++, @in);

undef %saw;
@saw{@in} = ();
@out = sort keys %saw; # remove sort if undesired

undef @ary;
@ary[@in] = @in;
@out = grep {defined} @ary;

@blues = qw/azure cerulean teal turquoise lapis-lazuli/;
%is_blue = ();
for (@blues) { $is_blue{$_} = 1 }

@primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31);
@is_tiny_prime = ();
for (@primes) { $is_tiny_prime[$_] = 1 }
or simply @istiny_prime[@primes] = (1) x @primes;

How can I tell whether a certain element is contained in a list or array?
in

If the values in question are integers instead of strings, you can save quite a lot of space by using bit
strings instead:

Now check whether is true for some .

Please do not use

or worse yet

These are slow (checks every element even if the first matches), inefficient (same reason), and
potentially buggy (what if there are regex characters in $whatever?). If you're only testing once, then
use:

Use a hash. Here's code to do both and more. It assumes that each element is unique in a given
array:

Note that this is the , that is, all elements in either A or in B but not in both. Think
of it as an xor operation.

The following code works for single-level arrays. It uses a stringwise comparison, and does not
distinguish defined versus undefined empty strings. Modify if you have other needs.

Perl version 5.8.6 documentation - perlfaq4

Page 19http://perldoc.perl.org

@articles = (1..10, 150..2000, 2017);
undef $read;
for (@articles) { vec($read,$_,1) = 1 }

($is_there) = grep $_ eq $whatever, @array;

($is_there) = grep /$whatever/, @array;

$is_there = 0;
foreach $elt (@array) {

if ($elt eq $elt_to_find) {
$is_there = 1;
last;

}
}
if ($is_there) { ... }

@union = @intersection = @difference = ();
%count = ();
foreach $element (@array1, @array2) { $count{$element}++ }
foreach $element (keys %count) {

push @union, $element;
push @{ $count{$element} > 1 ? \@intersection : \@difference }, $element;

}

$are_equal = compare_arrays(\@frogs, \@toads);

sub compare_arrays {
my ($first, $second) = @_;
no warnings; # silence spurious -w undef complaints
return 0 unless @$first == @$second;

vec($read,$n,1) $n

How do I compute the difference of two arrays? How do I compute the intersection of two
arrays?

How do I test whether two arrays or hashes are equal?

symmetric difference

For multilevel structures, you may wish to use an approach more like this one. It uses the CPAN
module FreezeThaw:

This approach also works for comparing hashes. Here we'll demonstrate two different answers:

The first reports that both those the hashes contain the same data, while the second reports that they
do not. Which you prefer is left as an exercise to the reader.

To find the first array element which satisfies a condition, you can use the first() function in the
List::Util module, which comes with Perl 5.8. This example finds the first element that contains "Perl".

If you cannot use List::Util, you can make your own loop to do the same thing. Once you find the
element, you stop the loop with last.

If you want the array index, you can iterate through the indices and check the array element at each
index until you find one that satisfies the condition.

Perl version 5.8.6 documentation - perlfaq4

Page 20http://perldoc.perl.org

for (my $i = 0; $i < @$first; $i++) {
return 0 if $first->[$i] ne $second->[$i];

}
return 1;

}

use FreezeThaw qw(cmpStr);
@a = @b = ("this", "that", ["more", "stuff"]);

printf "a and b contain %s arrays\n",
cmpStr(\@a, \@b) == 0

? "the same"
: "different";

use FreezeThaw qw(cmpStr cmpStrHard);

%a = %b = ("this" => "that", "extra" => ["more", "stuff"]);
$a{EXTRA} = \%b;
$b{EXTRA} = \%a;

printf "a and b contain %s hashes\n",
cmpStr(\%a, \%b) == 0 ? "the same" : "different";

printf "a and b contain %s hashes\n",
cmpStrHard(\%a, \%b) == 0 ? "the same" : "different";

use List::Util qw(first);

my $element = first { /Perl/ } @array;

my $found;
foreach my $element (@array)
{
if(/Perl/) { $found = $element; last }
}

How do I find the first array element for which a condition is true?

In general, you usually don't need a linked list in Perl, since with regular arrays, you can push and pop
or shift and unshift at either end, or you can use splice to add and/or remove arbitrary number of
elements at arbitrary points. Both pop and shift are both O(1) operations on Perl's dynamic arrays. In
the absence of shifts and pops, push in general needs to reallocate on the order every log(N) times,
and unshift will need to copy pointers each time.

If you really, really wanted, you could use structures as described in or and do just
what the algorithm book tells you to do. For example, imagine a list node like this:

You could walk the list this way:

You could add to the list this way:

But again, Perl's built-in are virtually always good enough.

Perl version 5.8.6 documentation - perlfaq4

Page 21http://perldoc.perl.org

my($found, $index) = (undef, -1);
for($i = 0; $i < @array; $i++)
{

if($array[$i] =~ /Perl/)
{
$found = $array[$i];
$index = $i;
last;
}
}

$node = {
VALUE => 42,
LINK => undef,

};

print "List: ";
for ($node = $head; $node; $node = $node->{LINK}) {

print $node->{VALUE}, " ";
}
print "\n";

my ($head, $tail);
$tail = append($head, 1); # grow a new head
for $value (2 .. 10) {

$tail = append($tail, $value);
}

sub append {
my($list, $value) = @_;
my $node = { VALUE => $value };
if ($list) {

$node->{LINK} = $list->{LINK};
$list->{LINK} = $node;

} else {
$_[0] = $node; # replace caller’s version

}
return $node;

}

How do I handle linked lists?

perldsc perltoot

Circular lists could be handled in the traditional fashion with linked lists, or you could just do
something like this with an array:

If you either have Perl 5.8.0 or later installed, or if you have Scalar-List-Utils 1.03 or later installed,
you can say:

If not, you can use a Fisher-Yates shuffle.

Note that the above implementation shuffles an array in place, unlike the List::Util::shuffle() which
takes a list and returns a new shuffled list.

You've probably seen shuffling algorithms that work using splice, randomly picking another element to
swap the current element with

This is bad because splice is already O(N), and since you do it N times, you just invented a quadratic
algorithm; that is, O(N**2). This does not scale, although Perl is so efficient that you probably won't
notice this until you have rather largish arrays.

Use / :

Perl version 5.8.6 documentation - perlfaq4

Page 22http://perldoc.perl.org

How do I handle circular lists?

How do I shuffle an array randomly?

How do I process/modify each element of an array?

unshift(@array, pop(@array)); # the last shall be first
push(@array, shift(@array)); # and vice versa

use List::Util ’shuffle’;

@shuffled = shuffle(@list);

sub fisher_yates_shuffle {
my $deck = shift; # $deck is a reference to an array
my $i = @$deck;
while ($i--) {

my $j = int rand ($i+1);
@$deck[$i,$j] = @$deck[$j,$i];

}
}

shuffle my mpeg collection
#
my @mpeg = <audio/*/*.mp3>;
fisher_yates_shuffle(\@mpeg); # randomize @mpeg in place
print @mpeg;

srand;
@new = ();
@old = 1 .. 10; # just a demo
while (@old) {

push(@new, splice(@old, rand @old, 1));
}

for (@lines) {
s/foo/bar/; # change that word
y/XZ/ZX/; # swap those letters

for foreach

Here's another; let's compute spherical volumes:

which can also be done with map() which is made to transform one list into another:

If you want to do the same thing to modify the values of the hash, you can use the function.
As of Perl 5.6 the values are not copied, so if you modify $orbit (in this case), you modify the value.

Prior to perl 5.6 returned copies of the values, so older perl code often contains constructions
such as instead of where the hash is to be modified.

Use the rand() function (see):

Or, simply: my $element = $array[rand @array];

Use the List::Permutor module on CPAN. If the list is actually an array, try the Algorithm::Permute
module (also on CPAN). It's written in XS code and is very efficient.

For even faster execution, you could do:

Here's a little program that generates all permutations of all the words on each line of input. The
algorithm embodied in the permute() function is discussed in Volume 4 (still unpublished) of Knuth's

and will work on any list:

Perl version 5.8.6 documentation - perlfaq4

Page 23http://perldoc.perl.org

}

for (@volumes = @radii) { # @volumes has changed parts
$_ **= 3;
$_ *= (4/3) * 3.14159; # this will be constant folded

}

@volumes = map {$_ ** 3 * (4/3) * 3.14159} @radii;

for $orbit (values %orbits) {
($orbit **= 3) *= (4/3) * 3.14159;

}

$index = rand @array;
$element = $array[$index];

use Algorithm::Permute;
my @array = ’a’..’d’;
my $p_iterator = Algorithm::Permute->new (\@array);
while (my @perm = $p_iterator->next) {

print "next permutation: (@perm)\n";
}

use Algorithm::Permute;
my @array = ’a’..’d’;
Algorithm::Permute::permute {

print "next permutation: (@array)\n";
} @array;

#!/usr/bin/perl -n
Fischer-Kause ordered permutation generator

values

values
@orbits{keys %orbits} values %orbits

How do I select a random element from an array?

How do I permute N elements of a list?

"rand" in perlfunc

The Art of Computer Programming

Supply a comparison function to sort() (described in):

The default sort function is cmp, string comparison, which would sort into .
, used above, is the numerical comparison operator.

If you have a complicated function needed to pull out the part you want to sort on, then don't do it
inside the sort function. Pull it out first, because the sort BLOCK can be called many times for the
same element. Here's an example of how to pull out the first word after the first number on each item,
and then sort those words case-insensitively.

which could also be written this way, using a trick that's come to be known as the Schwartzian
Transform:

If you need to sort on several fields, the following paradigm is useful.

This can be conveniently combined with precalculation of keys as given above.

See the article in the "Far More Than You Ever Wanted To Know" collection in
http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz for more about this approach.

See also the question below on sorting hashes.

Perl version 5.8.6 documentation - perlfaq4

Page 24http://perldoc.perl.org

sub permute (&@) {
my $code = shift;
my @idx = 0..$#_;
while ($code->(@_[@idx])) {
my $p = $#idx;
--$p while $idx[$p-1] > $idx[$p];
my $q = $p or return;
push @idx, reverse splice @idx, $p;
++$q while $idx[$p-1] > $idx[$q];
@idx[$p-1,$q]=@idx[$q,$p-1];
}
}

permute {print"@_\n"} split;

@list = sort { $a <=> $b } @list;

@idx = ();
for (@data) {

($item) = /\d+\s*(\S+)/;
push @idx, uc($item);

}
@sorted = @data[sort { $idx[$a] cmp $idx[$b] } 0 .. $#idx];

@sorted = map { $_->[0] }
sort { $a->[1] cmp $b->[1] }
map { [$_, uc((/\d+\s*(\S+)/)[0])] } @data;

@sorted = sort { field1($a) <=> field1($b) ||
field2($a) cmp field2($b) ||
field3($a) cmp field3($b)

} @data;

How do I sort an array by (anything)?
"sort" in perlfunc

sort

(1, 2, 10) (1, 10, 2)
<=>

Use pack() and unpack(), or else vec() and the bitwise operations.

For example, this sets $vec to have bit N set if $ints[N] was set:

Here's how, given a vector in $vec, you can get those bits into your @ints array:

This method gets faster the more sparse the bit vector is. (Courtesy of Tim Bunce and Winfried
Koenig.)

You can make the while loop a lot shorter with this suggestion from Benjamin Goldberg:

Or use the CPAN module Bit::Vector:

Bit::Vector provides efficient methods for bit vector, sets of small integers and "big int" math.

Here's a more extensive illustration using vec():

Perl version 5.8.6 documentation - perlfaq4

Page 25http://perldoc.perl.org

How do I manipulate arrays of bits?

$vec = ’’;
foreach(@ints) { vec($vec,$_,1) = 1 }

sub bitvec_to_list {
my $vec = shift;
my @ints;
Find null-byte density then select best algorithm
if ($vec =~ tr/\0// / length $vec > 0.95) {

use integer;
my $i;
This method is faster with mostly null-bytes
while($vec =~ /[^\0]/g) {

$i = -9 + 8 * pos $vec;
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);
push @ints, $i if vec($vec, ++$i, 1);

}
} else {

This method is a fast general algorithm
use integer;
my $bits = unpack "b*", $vec;
push @ints, 0 if $bits =~ s/^(\d)// && $1;
push @ints, pos $bits while($bits =~ /1/g);

}
return \@ints;

}

while($vec =~ /[^\0]+/g) {
push @ints, grep vec($vec, $_, 1), $-[0] * 8 .. $+[0] * 8;

}

$vector = Bit::Vector->new($num_of_bits);
$vector->Index_List_Store(@ints);
@ints = $vector->Index_List_Read();

The short story is that you should probably only use defined on scalars or functions, not on
aggregates (arrays and hashes). See in the 5.004 release or later of Perl for
more detail.

Use the each() function (see) if you don't care whether it's sorted:

Perl version 5.8.6 documentation - perlfaq4

Page 26http://perldoc.perl.org

vec demo
$vector = "\xff\x0f\xef\xfe";
print "Ilya’s string \\xff\\x0f\\xef\\xfe represents the number ",

unpack("N", $vector), "\n";
$is_set = vec($vector, 23, 1);
print "Its 23rd bit is ", $is_set ? "set" : "clear", ".\n";
pvec($vector);

set_vec(1,1,1);
set_vec(3,1,1);
set_vec(23,1,1);

set_vec(3,1,3);
set_vec(3,2,3);
set_vec(3,4,3);
set_vec(3,4,7);
set_vec(3,8,3);
set_vec(3,8,7);

set_vec(0,32,17);
set_vec(1,32,17);

sub set_vec {
my ($offset, $width, $value) = @_;
my $vector = ’’;
vec($vector, $offset, $width) = $value;
print "offset=$offset width=$width value=$value\n";
pvec($vector);

}

sub pvec {
my $vector = shift;
my $bits = unpack("b*", $vector);
my $i = 0;
my $BASE = 8;

print "vector length in bytes: ", length($vector), "\n";
@bytes = unpack("A8" x length($vector), $bits);
print "bits are: @bytes\n\n";

}

while (($key, $value) = each %hash) {
print "$key = $value\n";

}

Why does defined() return true on empty arrays and hashes?

How do I process an entire hash?

"defined" in perlfunc

"each" in perlfunc

Data: Hashes (Associative Arrays)

If you want it sorted, you'll have to use foreach() on the result of sorting the keys as shown in an
earlier question.

(contributed by brian d foy)

The easy answer is "Don't do that!"

If you iterate through the hash with each(), you can delete the key most recently returned without
worrying about it. If you delete or add other keys, the iterator may skip or double up on them since
perl may rearrange the hash table. See the entry for in .

Create a reverse hash:

That's not particularly efficient. It would be more space-efficient to use:

If your hash could have repeated values, the methods above will only find one of the associated keys.
This may or may not worry you. If it does worry you, you can always reverse the hash into a hash of
arrays instead:

If you mean how many keys, then all you have to do is use the keys() function in a scalar context:

The keys() function also resets the iterator, which means that you may see strange results if you use
this between uses of other hash operators such as each().

Internally, hashes are stored in a way that prevents you from imposing an order on key-value pairs.
Instead, you have to sort a list of the keys or values:

Here we'll do a reverse numeric sort by value, and if two keys are identical, sort by length of key, or if
that fails, by straight ASCII comparison of the keys (well, possibly modified by your locale--see

).

Perl version 5.8.6 documentation - perlfaq4

Page 27http://perldoc.perl.org

%by_value = reverse %by_key;
$key = $by_value{$value};

while (($key, $value) = each %by_key) {
$by_value{$value} = $key;

}

while (($key, $value) = each %by_key) {
push @{$key_list_by_value{$value}}, $key;

}

$num_keys = keys %hash;

@keys = sort keys %hash; # sorted by key
@keys = sort {
$hash{$a} cmp $hash{$b}
} keys %hash; # and by value

@keys = sort {
$hash{$b} <=> $hash{$a}

||

What happens if I add or remove keys from a hash while iterating over it?

How do I look up a hash element by value?

How can I know how many entries are in a hash?

How do I sort a hash (optionally by value instead of key)?

each() perlfunc

perllocale

You can look into using the DB_File module and tie() using the $DB_BTREE hash bindings as
documented in . The Tie::IxHash module from CPAN might also be
instructive.

Hashes contain pairs of scalars: the first is the key, the second is the value. The key will be coerced
to a string, although the value can be any kind of scalar: string, number, or reference. If a key $key is
present in %hash, will return true. The value for a given key can be ,
in which case will be while will return true. This
corresponds to (,) being in the hash.

Pictures help... here's the %hash table:

And these conditions hold

If you now say

your table now reads:

and these conditions now hold; changes in caps:

Perl version 5.8.6 documentation - perlfaq4

Page 28http://perldoc.perl.org

length($b) <=> length($a)
||

$a cmp $b
} keys %hash;

keys values
+------+------+
a	3
x	7
d	0
e	2
+------+------+

$hash{’a’} is true
$hash{’d’} is false
defined $hash{’d’} is true
defined $hash{’a’} is true
exists $hash{’a’} is true (Perl5 only)
grep ($_ eq ’a’, keys %hash) is true

undef $hash{’a’}

keys values
+------+------+
a	undef
x	7
d	0
e	2
+------+------+

$hash{’a’} is FALSE
$hash{’d’} is false
defined $hash{’d’} is true
defined $hash{’a’} is FALSE

How can I always keep my hash sorted?

What's the difference between "delete" and "undef" with hashes?

"In Memory Databases" in DB_File

exists($hash{$key}) undef
$hash{$key} undef exists $hash{$key}
$key undef

Notice the last two: you have an undef value, but a defined key!

Now, consider this:

your table now reads:

and these conditions now hold; changes in caps:

See, the whole entry is gone!

This depends on the tied hash's implementation of EXISTS(). For example, there isn't the concept of
undef with hashes that are tied to DBM* files. It also means that exists() and defined() do the same
thing with a DBM* file, and what they end up doing is not what they do with ordinary hashes.

Using in scalar context returns the number of keys in the hash resets the iterator
associated with the hash. You may need to do this if you use to exit a loop early so that when
you re-enter it, the hash iterator has been reset.

First you extract the keys from the hashes into lists, then solve the "removing duplicates" problem
described above. For example:

Or more succinctly:

Or if you really want to save space:

Perl version 5.8.6 documentation - perlfaq4

Page 29http://perldoc.perl.org

exists $hash{’a’} is true (Perl5 only)
grep ($_ eq ’a’, keys %hash) is true

delete $hash{’a’}

keys values
+------+------+
x	7
d	0
e	2
+------+------+

$hash{’a’} is false
$hash{’d’} is false
defined $hash{’d’} is true
defined $hash{’a’} is false
exists $hash{’a’} is FALSE (Perl5 only)
grep ($_ eq ’a’, keys %hash) is FALSE

%seen = ();
for $element (keys(%foo), keys(%bar)) {

$seen{$element}++;
}
@uniq = keys %seen;

@uniq = keys %{{%foo,%bar}};

%seen = ();

Why don't my tied hashes make the defined/exists distinction?

How do I reset an each() operation part-way through?

How can I get the unique keys from two hashes?

keys %hash
last

and

Either stringify the structure yourself (no fun), or else get the MLDBM (which uses Data::Dumper)
module from CPAN and layer it on top of either DB_File or GDBM_File.

Use the Tie::IxHash from CPAN.

If you say something like:

Then that element "autovivifies"; that is, it springs into existence whether you store something there or
not. That's because functions get scalars passed in by reference. If somefunc() modifies , it has
to be ready to write it back into the caller's version.

This has been fixed as of Perl5.004.

Normally, merely accessing a key's value for a nonexistent key does cause that key to be forever
there. This is different than awk's behavior.

Usually a hash ref, perhaps like this:

References are documented in and the upcoming . Examples of complex data
structures are given in and . Examples of structures and object-oriented classes are in

.

Perl version 5.8.6 documentation - perlfaq4

Page 30http://perldoc.perl.org

while (defined ($key = each %foo)) {
$seen{$key}++;

}
while (defined ($key = each %bar)) {

$seen{$key}++;
}
@uniq = keys %seen;

use Tie::IxHash;
tie my %myhash, ’Tie::IxHash’;
for (my $i=0; $i<20; $i++) {

$myhash{$i} = 2*$i;
}
my @keys = keys %myhash;
@keys = (0,1,2,3,...)

somefunc($hash{"nonesuch key here"});

$record = {
NAME => "Jason",
EMPNO => 132,
TITLE => "deputy peon",
AGE => 23,
SALARY => 37_000,
PALS => ["Norbert", "Rhys", "Phineas"],

};

How can I store a multidimensional array in a DBM file?

How can I make my hash remember the order I put elements into it?

Why does passing a subroutine an undefined element in a hash create it?

How can I make the Perl equivalent of a C structure/C++ class/hash or array of hashes or
arrays?

$_[0]

not

perlref perlreftut
perldsc perllol

perltoot

You can't do this directly, but you could use the standard Tie::RefHash module distributed with Perl.

Perl is binary clean, so this shouldn't be a problem. For example, this works fine (assuming the files
are found):

On less elegant (read: Byzantine) systems, however, you have to play tedious games with "text"
versus "binary" files. See or .

If you're concerned about 8-bit ASCII data, then see .

If you want to deal with multibyte characters, however, there are some gotchas. See the section on
Regular Expressions.

Assuming that you don't care about IEEE notations like "NaN" or "Infinity", you probably just want to
use a regular expression.

There are also some commonly used modules for the task. (distributed with 5.8) provides
access to perl's internal function for determining whether a variable looks like
a number. exports functions that validate data types using both the above and other
regular expressions. Thirdly, there is which has regular expressions to match
various types of numbers. Those three modules are available from the CPAN.

If you're on a POSIX system, Perl supports the function. Its semantics are
somewhat cumbersome, so here's a wrapper function for more convenient access. This
function takes a string and returns the number it found, or for input that isn't a C float. The

function is a front end to if you just want to say, ``Is this a float?''

Perl version 5.8.6 documentation - perlfaq4

Page 31http://perldoc.perl.org

How can I use a reference as a hash key?

How do I handle binary data correctly?

How do I determine whether a scalar is a number/whole/integer/float?

Data: Misc

if (‘cat /vmunix‘ =~ /gzip/) {
print "Your kernel is GNU-zip enabled!\n";

}

if (/\D/) { print "has nondigits\n" }
if (/^\d+$/) { print "is a whole number\n" }
if (/^-?\d+$/) { print "is an integer\n" }
if (/^[+-]?\d+$/) { print "is a +/- integer\n" }
if (/^-?\d+\.?\d*$/) { print "is a real number\n" }
if (/^-?(?:\d+(?:\.\d*)?|\.\d+)$/) { print "is a decimal number\n" }
if (/^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/)
{ print "a C float\n" }

sub getnum {
use POSIX qw(strtod);
my $str = shift;
$str =~ s/^\s+//;
$str =~ s/\s+$//;
$! = 0;
my($num, $unparsed) = strtod($str);
if (($str eq ’’) || ($unparsed != 0) || $!) {

return undef;
} else {

return $num;
}

"binmode" in perlfunc perlopentut

perllocale

Scalar::Util

Data::Types
looks_like_number

Regexp::Common

POSIX::strtod
getnum

undef
is_numeric getnum

Or you could check out the module on the CPAN instead. The POSIX module (part of
the standard Perl distribution) provides the and for converting strings to double and
longs, respectively.

For some specific applications, you can use one of the DBM modules. See . More
generically, you should consult the FreezeThaw or Storable modules from CPAN. Starting from Perl
5.8 Storable is part of the standard distribution. Here's one example using Storable's and

functions:

The Data::Dumper module on CPAN (or the 5.005 release of Perl) is great for printing out data
structures. The Storable module on CPAN (or the 5.8 release of Perl), provides a function called

that recursively copies its argument.

Where $r1 can be a reference to any kind of data structure you'd like. It will be deeply copied.
Because takes and returns references, you'd have to add extra punctuation if you had a hash
of arrays that you wanted to copy.

Use the UNIVERSAL class (see).

Get the Business::CreditCard module from CPAN.

The kgbpack.c code in the PGPLOT module on CPAN does just this. If you're doing a lot of float or
double processing, consider using the PDL module from CPAN instead--it makes number-crunching
easy.

Copyright (c) 1997-2002 Tom Christiansen and Nathan Torkington. All rights reserved.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
You are permitted and encouraged to use this code in your own programs for fun or for profit as you
see fit. A simple comment in the code giving credit would be courteous but is not required.

Perl version 5.8.6 documentation - perlfaq4

Page 32http://perldoc.perl.org

}

sub is_numeric { defined getnum($_[0]) }

use Storable;
store(\%hash, "filename");

later on...
$href = retrieve("filename"); # by ref
%hash = %{ retrieve("filename") }; # direct to hash

use Storable qw(dclone);
$r2 = dclone($r1);

%newhash = %{ dclone(\%oldhash) };

String::Scanf

AnyDBM_File

UNIVERSAL

strtod strtol

store
retrieve

dclone

dclone

How do I keep persistent data across program calls?

How do I print out or copy a recursive data structure?

How do I define methods for every class/object?

How do I verify a credit card checksum?

How do I pack arrays of doubles or floats for XS code?

AUTHOR AND COPYRIGHT

