
open - perl pragma to set default PerlIO layers for input and output

Full-fledged support for I/O layers is now implemented provided Perl is configured to use PerlIO as its
IO system (which is now the default).

The pragma serves as one of the interfaces to declare default "layers" (also known as
"disciplines") for all I/O. Any two-argument open(), readpipe() (aka qx//) and similar operators found
within the lexical scope of this pragma will use the declared defaults. Three-argument opens are not
affected by this pragma since there you (can) explicitly specify the layers and are supposed to know
what you are doing.

With the subpragma you can declare the default layers of input streams, and with the
subpragma you can declare the default layers of output streams. With the subpragma you can
control both input and output streams simultaneously.

If you have a legacy encoding, you can use the tag.

if you want to set your encoding layers based on your locale environment variables, you can use the
tag. For example:

These are equivalent

as are these

Perl version 5.8.6 documentation - open

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use open IN => ":crlf", OUT => ":bytes";
use open OUT => ’:utf8’;
use open IO => ":encoding(iso-8859-7)";

use open IO => ’:locale’;

use open ’:utf8’;
use open ’:locale’;
use open ’:encoding(iso-8859-7)’;

use open ’:std’;

$ENV{LANG} = ’ru_RU.KOI8-R’;
the :locale will probe the locale environment variables like LANG
use open OUT => ’:locale’;
open(O, ">koi8");
print O chr(0x430); # Unicode CYRILLIC SMALL LETTER A = KOI8-R 0xc1
close O;
open(I, "<koi8");
printf "%#x\n", ord(<I>), "\n"; # this should print 0xc1
close I;

use open ’:utf8’;
use open IO => ’:utf8’;

use open ’:locale’;
use open IO => ’:locale’;

open

IN OUT
IO

:encoding(...)

:locale

and these

The matching of encoding names is loose: case does not matter, and many encodings have several
aliases. See for details and the list of supported locales.

Note that PerlIO layer must always be specified exactly like that, it is not subject to the loose
matching of encoding names.

When open() is given an explicit list of layers they are appended to the list declared using this
pragma.

The subpragma on its own has no effect, but if combined with the or
subpragmas, it converts the standard filehandles (STDIN, STDOUT, STDERR) to comply with
encoding selected for input/output handles. For example, if both input and out are chosen to be

, a will mean that STDIN, STDOUT, and STDERR are also in . On the other hand,
if only output is chosen to be in , a will cause only the STDOUT and
STDERR to be in . The subpragma implicitly turns on .

The logic of is described in full in , but in short it is first trying
nl_langinfo(CODESET) and then guessing from the LC_ALL and LANG locale environment variables.

Directory handles may also support PerlIO layers in the future.

If Perl is not built to use PerlIO as its IO system then only the two pseudo-layers and
are available.

The layer corresponds to "binary mode" and the layer corresponds to "text mode" on
platforms that distinguish between the two modes when opening files (which is many DOS-like
platforms, including Windows). These two layers are no-ops on platforms where binmode() is a no-op,
but perform their functions everywhere if PerlIO is enabled.

There is a class method in which is implemented as XS code. It is called by
to validate the layers:

The return value (if defined) is a Perl object, of class which is created by the C code
in . As yet there is nothing useful you can do with the object at the perl level.

, , , ,

Perl version 5.8.6 documentation - open

Page 2http://perldoc.perl.org

use open ’:encoding(iso-8859-7)’;
use open IO => ’:encoding(iso-8859-7)’;

PerlIO::Layer::->find("perlio")

Encode::Supported

encoding

perlio.c

"binmode" in perlfunc "open" in perlfunc perlunicode PerlIO encoding

:utf8

:std :utf8 :encoding

:utf8 :std :utf8
:encoding(koi8r) :std

koi8r :locale :std

:locale

:bytes :crlf

:bytes :crlf

PerlIO::Layer find
import

PerlIO::Layer

NONPERLIO FUNCTIONALITY

IMPLEMENTATION DETAILS

SEE ALSO

