
NEXT.pm - Provide a pseudo-class NEXT (et al) that allows method redispatch

NEXT.pm adds a pseudoclass named to any program that uses it. If a method calls
, the call to is redispatched as if the calling method had not originally been found.

In other words, a call to resumes the depth-first, left-to-right search of 's
class hierarchy that resulted in the original call to .

Note that this is not the same thing as , which begins a new dispatch that is
restricted to searching the ancestors of the current class. can backtrack past
the current class -- to look for a suitable method in other ancestors of -- whereas

cannot.

A typical use would be in the destructors of a class hierarchy, as illustrated in the synopsis above.
Each class in the hierarchy has a DESTROY method that performs some class-specific action and
then redispatches the call up the hierarchy. As a result, when an object of class D is destroyed, the

Perl version 5.8.6 documentation - NEXT

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use NEXT;

package A;
sub A::method { print "$_[0]: A method\n"; $_[0]->NEXT::method() }
sub A::DESTROY { print "$_[0]: A dtor\n"; $_[0]->NEXT::DESTROY() }

package B;
use base qw( A );
sub B::AUTOLOAD { print "$_[0]: B AUTOLOAD\n"; $_[0]->NEXT::AUTOLOAD()

}
sub B::DESTROY { print "$_[0]: B dtor\n"; $_[0]->NEXT::DESTROY() }

package C;
sub C::method { print "$_[0]: C method\n"; $_[0]->NEXT::method() }
sub C::AUTOLOAD { print "$_[0]: C AUTOLOAD\n"; $_[0]->NEXT::AUTOLOAD()

}
sub C::DESTROY { print "$_[0]: C dtor\n"; $_[0]->NEXT::DESTROY() }

package D;
use base qw( B C );
sub D::method { print "$_[0]: D method\n"; $_[0]->NEXT::method() }
sub D::AUTOLOAD { print "$_[0]: D AUTOLOAD\n"; $_[0]->NEXT::AUTOLOAD()

}
sub D::DESTROY { print "$_[0]: D dtor\n"; $_[0]->NEXT::DESTROY() }

package main;

my $obj = bless {}, "D";

$obj->method(); # Calls D::method, A::method, C::method
$obj->missing_method(); # Calls D::AUTOLOAD, B::AUTOLOAD, C::AUTOLOAD

# Clean-up calls D::DESTROY, B::DESTROY, A::DESTROY, C::DESTROY

NEXT m $self->
NEXT::m() m

$self->NEXT::m() $self
m

$self->SUPER::m()
$self->NEXT::m()

$self $self->
SUPER::m()



destructors of its parent classes are called (in depth-first, left-to-right order).

Another typical use of redispatch would be in 'ed methods. If such a method determined
that it was not able to handle a particular call, it might choose to redispatch that call, in the hope that
some other (above it, or to its left) might do better.

By default, if a redispatch attempt fails to find another method elsewhere in the objects class
hierarchy, it quietly gives up and does nothing (but see ). This gracious
acquiesence is also unlike the (generally annoying) behaviour of , which throws an exception if
it cannot redispatch.

Note that it is a fatal error for any method (including ) to attempt to redispatch any method
that does not have the same name. For example:

It is possible to make redispatch more demandingly (i.e. like does), so that the
redispatch throws an exception if it cannot find a "next" method to call.

To do this, simple invoke the redispatch as:

rather than:

The tells that there must actually be a next method to call, or it should throw an
exception.

is most commonly used in methods, as a means to decline an
request, but preserve the normal exception-on-failure semantics:

By using , if there is no other to handle the method call, an exception will
be thrown (as usually happens in the absence of a suitable ).

If redispatching is used in the methods of a "diamond" class hierarchy:

Perl version 5.8.6 documentation - NEXT

Page 2http://perldoc.perl.org

all

Enforcing redispatch

AUTOLOAD

AUTOLOAD

SUPER

AUTOLOAD

NEXT SUPER

ACTUAL NEXT

NEXT::ACTUAL AUTOLOAD AUTOLOAD

NEXT::ACTUAL AUTOLOAD
AUTOLOAD

NEXT

sub D::oops { print "oops!\n"; $_[0]->NEXT::other_method() }

$self->NEXT::ACTUAL::method();

$self->NEXT::method();

sub AUTOLOAD {
if ($AUTOLOAD =~ /foo|bar/) {
# handle here
}
else { # try elsewhere
shift()->NEXT::ACTUAL::AUTOLOAD(@_);
}
}

# A B
# / \ /
# C D
# \ /
# E

use NEXT;

Enforcing redispatch

Avoiding repetitions



then derived classes may (re-)inherit base-class methods through two or more distinct paths (e.g. in
the way inherits twice -- through and ). In such cases, a sequence of redispatches
will invoke the multiply inherited method as many times as it is inherited. For example, the above code
prints:

(i.e. is called twice).

In some cases this be the desired effect within a diamond hierarchy, but in others (e.g. for
destructors) it may be more appropriate to call each method only once during a sequence of
redispatches.

To cover such cases, you can redispatch methods via:

rather than:

This causes the redispatcher to only visit each distinct method once. That is, to skip any
classes in the hierarchy that it has already visited during redispatch. So, for example, if the previous
example were rewritten:

Perl version 5.8.6 documentation - NEXT

Page 3http://perldoc.perl.org

package A;
sub foo { print "called A::foo\n"; shift->NEXT::foo() }

package B;
sub foo { print "called B::foo\n"; shift->NEXT::foo() }

package C; @ISA = qw( A );
sub foo { print "called C::foo\n"; shift->NEXT::foo() }

package D; @ISA = qw(A B);
sub foo { print "called D::foo\n"; shift->NEXT::foo() }

package E; @ISA = qw(C D);
sub foo { print "called E::foo\n"; shift->NEXT::foo() }

E->foo();

called E::foo
called C::foo
called A::foo
called D::foo
called A::foo
called B::foo

$self->NEXT::DISTINCT::method();

$self->NEXT::method();

package A;
sub foo { print "called A::foo\n"; shift->NEXT::DISTINCT::foo() }

package B;
sub foo { print "called B::foo\n"; shift->NEXT::DISTINCT::foo() }

package C; @ISA = qw( A );

E A::foo C D NEXT

A::foo

method

may



then it would print:

and omit the second call to (since it would not be distinct from the first call to ).

Note that you can also use:

or:

to get both unique invocation exception-on-failure.

Note that, for historical compatibility, you can also use instead of .

Yet another pseudo-class that NEXT.pm provides is . Its behaviour is considerably simpler
than that of the family. A call to:

calls method named that the object in has inherited. That is:

Perl version 5.8.6 documentation - NEXT

Page 4http://perldoc.perl.org

sub foo { print "called C::foo\n"; shift->NEXT::DISTINCT::foo() }

package D; @ISA = qw(A B);
sub foo { print "called D::foo\n"; shift->NEXT::DISTINCT::foo() }

package E; @ISA = qw(C D);
sub foo { print "called E::foo\n"; shift->NEXT::DISTINCT::foo() }

E->foo();

called E::foo
called C::foo
called A::foo
called D::foo
called B::foo

$self->NEXT::DISTINCT::ACTUAL::method();

$self->NEXT::ACTUAL::DISTINCT::method();

$obj->EVERY::foo();

use NEXT;

package A; @ISA = qw(B D X);
sub foo { print "A::foo " }

package B; @ISA = qw(D X);
sub foo { print "B::foo " }

package X; @ISA = qw(D);
sub foo { print "X::foo " }

package D;
sub foo { print "D::foo " }

A::foo A::foo

NEXT::UNSEEN NEXT::DISTINCT

EVERY
NEXT

foo $obj

and

every

Invoking all versions of a method with a single call



Prefixing a method call with causes every method in the object's hierarchy with that name to
be invoked. As the above example illustrates, they are not called in Perl's usual "left-most-depth-first"
order. Instead, they are called "breadth-first-dependency-wise".

That means that the inheritance tree of the object is traversed breadth-first and the resulting order of
classes is used as the sequence in which methods are called. However, that sequence is modified by
imposing a rule that the appropritae method of a derived class must be called before the same
method of any ancestral class. That's why, in the above example, is called before ,
even though comes before in .

In general, there's no need to worry about the order of calls. They will be left-to-right, breadth-first,
most-derived-first. This works perfectly for most inherited methods (including destructors), but is
inappropriate for some kinds of methods (such as constructors, cloners, debuggers, and initializers)
where it's more appropriate that the least-derived methods be called first (as more-derived methods
may rely on the behaviour of their "ancestors"). In that case, instead of using the
pseudo-class:

you can use the pseudo-class:

which reverses the order of method call.

Whichever version is used, the actual methods are called in the same context (list, scalar, or void) as
the original call via , and return:

A hash of array references in list context. Each entry of the hash has the fully qualified method
name as its key and a reference to an array containing the method's list-context return values
as its value.

A reference to a hash of scalar values in scalar context. Each entry of the hash has the fully
qualified method name as its key and the method's scalar-context return values as its value.

Nothing in void context (obviously).

The typical way to use an call is to wrap it in another base method, that all classes inherit. For
example, to ensure that every destructor an object inherits is actually called (as opposed to just the
left-most-depth-first-est one):

Perl version 5.8.6 documentation - NEXT

Page 5http://perldoc.perl.org

package main;

my $obj = bless {}, ’A’;
$obj->EVERY::foo(); # prints" A::foo B::foo X::foo D::foo

$obj->EVERY::foo(); # prints" A::foo B::foo X::foo D::foo

$obj->EVERY::LAST::foo(); # prints" D::foo X::foo B::foo A::foo

package Base;
sub DESTROY { $_[0]->EVERY::Destroy }

package Derived1;
use base ’Base’;
sub Destroy {...}

package Derived2;
use base ’Base’, ’Derived1’;
sub Destroy {...}

EVERY::

X::foo D::foo
D X @B::ISA

EVERY

EVERY::LAST

EVERY

EVERY

Using EVERY methods



et cetera. Every derived class than needs its own clean-up behaviour simply adds its own
method ( a method), which the call to in the inherited
destructor then correctly picks up.

Likewise, to create a class hierarchy in which every initializer inherited by a new object is invoked:

et cetera. Every derived class than needs some additional initialization behaviour simply adds its own
method ( a method), which the call to in the inherited constructor

then correctly picks up.

Damian Conway (damian@conway.org)

Because it's a module, not an integral part of the interpreter, NEXT.pm has to guess where the
surrounding call was found in the method look-up sequence. In the presence of diamond inheritance
patterns it occasionally guesses wrong.

It's also too slow (despite caching).

Comment, suggestions, and patches welcome.

Perl version 5.8.6 documentation - NEXT

Page 6http://perldoc.perl.org

package Base;
sub new {

my ($class, %args) = @_;
my $obj = bless {}, $class;
$obj->EVERY::LAST::Init(\%args);
}

package Derived1;
use base ’Base’;
sub Init {

my ($argsref) = @_;
...
}

package Derived2;
use base ’Base’, ’Derived1’;
sub Init {

my ($argsref) = @_;
...
}

Copyright (c) 2000-2001, Damian Conway. All Rights Reserved.
This module is free software. It may be used, redistributed

and/or modified under the same terms as Perl itself.

Destroy
DESTROY EVERY::LAST::Destroy

Init new EVERY::LAST::Init

not

not

AUTHOR

BUGS AND IRRITATIONS

COPYRIGHT


