
Math::Complex - complex numbers and associated mathematical functions

This package lets you create and manipulate complex numbers. By default, limits itself to real
numbers, but an extra statement brings full complex support, along with a full set of mathematical
functions typically associated with and/or extended to complex numbers.

If you wonder what complex numbers are, they were invented to be able to solve the following
equation:

and by definition, the solution is noted (engineers use instead since usually denotes an intensity,
but the name does not matter). The number is a pure number.

The arithmetics with pure imaginary numbers works just like you would expect it with real numbers...
you just have to remember that

so you have:

Complex numbers are numbers that have both a real part and an imaginary part, and are usually
noted:

where is the part and is the part. The arithmetic with complex numbers is
straightforward. You have to keep track of the real and the imaginary parts, but otherwise the rules
used for real numbers just apply:

A graphical representation of complex numbers is possible in a plane (also called the ,
but it's really a 2D plane). The number

is the point whose coordinates are (a, b). Actually, it would be the vector originating from (0, 0) to (a,
b). It follows that the addition of two complex numbers is a vectorial addition.

Perl version 5.8.6 documentation - Math::Complex

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use Math::Complex;

$z = Math::Complex->make(5, 6);
$t = 4 - 3*i + $z;
$j = cplxe(1, 2*pi/3);

x*x = -1

i*i = -1

5i + 7i = i * (5 + 7) = 12i
4i - 3i = i * (4 - 3) = i
4i * 2i = -8
6i / 2i = 3
1 / i = -i

a + bi

(4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
(2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i

z = a + bi

Perl

i j i
i imaginary

real imaginary

complex plane

use

a b

Since there is a bijection between a point in the 2D plane and a complex number (i.e. the mapping is
unique and reciprocal), a complex number can also be uniquely identified with polar coordinates:

where is the distance to the origin, and the angle between the vector and the axis.
There is a notation for this using the exponential form, which is:

where is the famous imaginary number introduced above. Conversion between this form and the
cartesian form is immediate:

which is also expressed by this formula:

In other words, it's the projection of the vector onto the and axes. Mathematicians call the
or and the of the complex number. The of will be noted

.

The polar notation (also known as the trigonometric representation) is much more handy for
performing multiplications and divisions of complex numbers, whilst the cartesian notation is better
suited for additions and subtractions. Real numbers are on the axis, and therefore is zero or
.

All the common operations that can be performed on a real number have been defined to work on
complex numbers as well, and are merely of the operations defined on real numbers. This
means they keep their natural meaning when there is no imaginary part, provided the number is within
their definition set.

For instance, the routine which computes the square root of its argument is only defined for
non-negative real numbers and yields a non-negative real number (it is an application from to).
If we allow it to return a complex number, then it can be extended to negative real numbers to
become an application from to (the set of complex numbers):

It can also be extended to be an application from to , whilst its restriction to behaves as defined
above by using the following definition:

Indeed, a negative real number can be noted (the modulus is always non-negative, so
is really , a negative number) and the above definition states that

which is exactly what we had defined for negative real numbers above. The returns only one of
the solutions: if you want the both, use the function.

All the common mathematical functions defined on real numbers that are extended to complex
numbers share that same property of working when the imaginary part is zero (otherwise, it
would not be called an extension, would it?).

Perl version 5.8.6 documentation - Math::Complex

Page 2http://perldoc.perl.org

[rho, theta]

rho * exp(i * theta)

a = rho * cos(theta)
b = rho * sin(theta)

z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)

sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i

sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)

sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i

rho theta

a + bi

z
abs(z)

sqrt

[x,pi]
[x,pi] -x

sqrt
root

x

i

x y rho
norm modulus theta argument norm

x theta pi

extensions

x

as usual

R+ R+

R C

C C R

A operation possible on a complex number that is the identity for real numbers is called the
, and is noted with a horizontal bar above the number, or here.

Simple... Now look:

We saw that the norm of was noted and was defined as the distance to the origin, also
known as:

so

If z is a pure real number (i.e.), then the above yields:

which is true (has the regular meaning for real number, i.e. stands for the absolute value). This
example explains why the norm of is noted : it extends the function to complex
numbers, yet is the regular we know when the complex number actually has no imaginary part...
This justifies our use of the notation for the norm.

Given the following notations:

the following (overloaded) operations are supported on complex numbers:

The following extra operations are supported on both real and complex numbers:

Perl version 5.8.6 documentation - Math::Complex

Page 3http://perldoc.perl.org

new
conjugate

a posteriori

~z

z abs(z)

b == 0

abs
z abs(z) abs

abs
abs

z = a + bi
~z = a - bi

z * ~z = (a + bi) * (a - bi) = a*a + b*b

rho = abs(z) = sqrt(a*a + b*b)

z * ~z = abs(z) ** 2

a * a = abs(a) ** 2

z1 = a + bi = r1 * exp(i * t1)
z2 = c + di = r2 * exp(i * t2)
z = <any complex or real number>

z1 + z2 = (a + c) + i(b + d)
z1 - z2 = (a - c) + i(b - d)
z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
z1 ** z2 = exp(z2 * log z1)
~z = a - bi
abs(z) = r1 = sqrt(a*a + b*b)
sqrt(z) = sqrt(r1) * exp(i * t/2)
exp(z) = exp(a) * exp(i * b)
log(z) = log(r1) + i*t
sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
atan2(z1, z2) = atan(z1/z2)

Re(z) = a
Im(z) = b
arg(z) = t

OPERATIONS

, , , , , , , , , , , have aliases , , , ,
, , , , , , , respectively. , , , , , and

can be used also as mutators. The returns only one of the solutions: if you want all
three, use the function.

The function is available to compute all the roots of some complex, where is a strictly positive
integer. There are exactly such roots, returned as a list. Getting the number mathematicians call
such that:

is a simple matter of writing:

The th root for is given by:

Perl version 5.8.6 documentation - Math::Complex

Page 4http://perldoc.perl.org

abs(z) = r

cbrt(z) = z ** (1/3)
log10(z) = log(z) / log(10)
logn(z, n) = log(z) / log(n)

tan(z) = sin(z) / cos(z)

csc(z) = 1 / sin(z)
sec(z) = 1 / cos(z)
cot(z) = 1 / tan(z)

asin(z) = -i * log(i*z + sqrt(1-z*z))
acos(z) = -i * log(z + i*sqrt(1-z*z))
atan(z) = i/2 * log((i+z) / (i-z))

acsc(z) = asin(1 / z)
asec(z) = acos(1 / z)
acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))

sinh(z) = 1/2 (exp(z) - exp(-z))
cosh(z) = 1/2 (exp(z) + exp(-z))
tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))

csch(z) = 1 / sinh(z)
sech(z) = 1 / cosh(z)
coth(z) = 1 / tanh(z)

asinh(z) = log(z + sqrt(z*z+1))
acosh(z) = log(z + sqrt(z*z-1))
atanh(z) = 1/2 * log((1+z) / (1-z))

acsch(z) = asinh(1 / z)
asech(z) = acosh(1 / z)
acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))

1 + j + j*j = 0;

$j = ((root(1, 3))[1];

arg abs log csc cot acsc acot csch coth acosech acotanh rho theta ln cosec
cotan acosec acotan cosech cotanh acosech acotanh

root n n
n

k

Re Im arg abs rho
theta cbrt

root

j

z = [r,t]

The comparison operator, <=>, is also defined. In order to ensure its restriction to real
numbers is conform to what you would expect, the comparison is run on the real part of the complex
number first, and imaginary parts are compared only when the real parts match.

To create a complex number, use either:

if you know the cartesian form of the number, or

if you like. To create a number using the polar form, use either:

instead. The first argument is the modulus, the second is the angle (in radians, the full circle is 2*pi).
(Mnemonic: is used as a notation for complex numbers in the polar form).

It is possible to write:

but that will be silently converted into , since the modulus must be non-negative (it
represents the distance to the origin in the complex plane).

It is also possible to have a complex number as either argument of the , , , and
: the appropriate component of the argument will be used.

The , , , , and will also understand a single (string) argument of the forms

in which case the appropriate cartesian and exponential components will be parsed from the string
and used to create new complex numbers. The imaginary component and the theta, respectively, will
default to zero.

When printed, a complex number is usually shown under its cartesian style , but there are
legitimate cases where the polar style is more appropriate.

By calling the class method and supplying either or
as an argument, you override the default display style, which is . Not

supplying any argument returns the current settings.

This default can be overridden on a per-number basis by calling the method

Perl version 5.8.6 documentation - Math::Complex

Page 5http://perldoc.perl.org

(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)

$z = Math::Complex->make(3, 4);
$z = cplx(3, 4);

$z = 3 + 4*i;

$z = Math::Complex->emake(5, pi/3);
$x = cplxe(5, pi/3);

$x = cplxe(-3, pi/4);

$z1 = cplx(-2, 1);
$z2 = cplx($z1, 4);

2-3i
-3i

[2,3]
[2]

spaceship

a+bi
[r,t]

CREATION

STRINGIFICATION

e

[3,-3pi/4]

make emake cplx
cplxe

new make emake cplx cplxe

Math::Complex::display_format "polar"
"cartesian" "cartesian"

display_format

instead. As before, not supplying any argument returns the current display style for this number.
Otherwise whatever you specify will be the new display style for particular number.

For instance:

The polar style attempts to emphasize arguments like (where is a positive integer and an
integer within [-9, +9]), this is called .

The class method and the corresponding object method can
now be called using a parameter hash instead of just a one parameter.

The old display format style, which can have values or , can be changed
using the parameter.

The one parameter calling convention also still works.

There are two new display parameters.

The first one is , which is a sprintf()-style format string to be used for both numeric parts of
the complex number(s). The is somewhat system-dependent but most often it corresponds to

. You can revert to the default by setting the to .

Notice that this affects also the return values of the methods: in list context the
whole parameter hash will be returned, as opposed to only the style parameter value. This is a
potential incompatibility with earlier versions if you have been calling the method
in list context.

The second new display parameter is , which can be set to true or false,
the default being true. See the previous section for what this means.

Thanks to overloading, the handling of arithmetics with complex numbers is simple and almost
transparent.

Here are some examples:

Perl version 5.8.6 documentation - Math::Complex

Page 6http://perldoc.perl.org

this

k*pi/n n k
polar pretty-printing

use Math::Complex;

Math::Complex::display_format(’polar’);
$j = (root(1, 3))[1];
print "j = $j\n"; # Prints "j = [1,2pi/3]"
$j->display_format(’cartesian’);
print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"

$j->display_format(style => "polar");

$j->display_format("polar");

the $j from the above example

$j->display_format(’format’ => ’%.5f’);
print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
$j->display_format(’format’ => undef);
print "j = $j\n"; # Prints "j = -0.5+0.86603i"

use Math::Complex;

CHANGED IN PERL 5.6
display_format display_format

"cartesian" "polar"
"style"

"format"

"%.15g" format undef

display_format

display_format

"polar_pretty_print"

USAGE

The division (/) and the following functions

cannot be computed for all arguments because that would mean dividing by zero or taking logarithm
of zero. These situations cause fatal runtime errors looking like this

or

For the , , , , , , , , , the argument cannot be (zero).
For the logarithmic functions and the , , the argument cannot be (one). For the ,

, the argument cannot be (minus one). For the , , the argument cannot be (the
imaginary unit). For the , , the argument cannot be (the negative imaginary unit). For
the , , , the argument cannot be , where is any integer.

Note that because we are operating on approximations of real numbers, these errors can happen
when merely `too close' to the singularities listed above.

The and accept both real and complex arguments. When they cannot recognize the
arguments they will die with error messages like the following

Perl version 5.8.6 documentation - Math::Complex

Page 7http://perldoc.perl.org

$j = cplxe(1, 2*pi/3); # $j ** 3 == 1
print "j = $j, j**3 = ", $j ** 3, "\n";
print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";

$z = -16 + 0*i; # Force it to be a complex
print "sqrt($z) = ", sqrt($z), "\n";

$k = exp(i * 2*pi/3);
print "$j - $k = ", $j - $k, "\n";

$z->Re(3); # Re, Im, arg, abs,
$j->arg(2); # (the last two aka rho, theta)

can be used also as mutators.

log ln log10 logn
tan sec csc cot
atan asec acsc acot
tanh sech csch coth
atanh asech acsch acoth

cot(0): Division by zero.
(Because in the definition of cot(0), the divisor sin(0) is 0)
Died at ...

atanh(-1): Logarithm of zero.
Died at...

Math::Complex::make: Cannot take real part of ...
Math::Complex::make: Cannot take real part of ...
Math::Complex::emake: Cannot take rho of ...
Math::Complex::emake: Cannot take theta of ...

ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO

ERRORS DUE TO INDIGESTIBLE ARGUMENTS

csc cot asec acsc acot csch coth asech acsch 0
atanh acoth 1 atanh

acoth -1 atan acot i
atan acoth -i

tan sec tanh

make emake

pi/2 + k * pi k

Saying exports many mathematical routines in the caller environment and
even overrides some (,). This is construed as a feature by the Authors, actually... ;-)

All routines expect to be given real or complex numbers. Don't attempt to use BigFloat, since Perl has
currently no rule to disambiguate a '+' operation (for instance) between two overloaded entities.

In Cray UNICOS there is some strange numerical instability that results in root(), cos(), sin(), cosh(),
sinh(), losing accuracy fast. Beware. The bug may be in UNICOS math libs, in UNICOS C compiler, in
Math::Complex. Whatever it is, it does not manifest itself anywhere else where Perl runs.

Daniel S. Lewart < >

Original authors Raphael Manfredi < > and Jarkko Hietaniemi <
>

Perl version 5.8.6 documentation - Math::Complex

Page 8http://perldoc.perl.org

BUGS

AUTHORS

use Math::Complex;
sqrt log

d-lewart@uiuc.edu

Raphael_Manfredi@pobox.com
jhi@iki.fi

