
IO::Handle - supply object methods for I/O handles

is the base class for all other IO handle classes. It is not intended that objects of
would be created directly, but instead is inherited from by several other

classes in the IO hierarchy.

If you are reading this documentation, looking for a replacement for the package, then I
suggest you read the documentation for too.

new ()

Creates a new object.

new_from_fd (FD, MODE)

Creates an like does. It requires two parameters, which are passed to the
method ; if the fdopen fails, the object is destroyed. Otherwise, it is returned to the
caller.

See for complete descriptions of each of the following supported methods,
which are just front ends for the corresponding built-in functions:

Perl version 5.8.6 documentation - IO::Handle

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

CONSTRUCTOR

METHODS

use IO::Handle;

$io = new IO::Handle;
if ($io->fdopen(fileno(STDIN),"r")) {

print $io->getline;
$io->close;

}

$io = new IO::Handle;
if ($io->fdopen(fileno(STDOUT),"w")) {

$io->print("Some text\n");
}

setvbuf is not available by default on Perls 5.8.0 and later.
use IO::Handle ’_IOLBF’;
$io->setvbuf($buffer_var, _IOLBF, 1024);

undef $io; # automatically closes the file if it’s open

autoflush STDOUT 1;

$io->close
$io->eof
$io->fileno
$io->format_write([FORMAT_NAME])
$io->getc
$io->read (BUF, LEN, [OFFSET])
$io->print (ARGS)

IO::Handle
IO::Handle IO::Handle

FileHandle
IO::File

IO::Handle

IO::Handle new
fdopen

IO::Handleperlfunc

See for complete descriptions of each of the following supported methods. All of
them return the previous value of the attribute and takes an optional single argument that when given
will set the value. If no argument is given the previous value is unchanged (except for $io->autoflush
will actually turn ON autoflush by default).

The following methods are not supported on a per-filehandle basis.

Furthermore, for doing normal I/O you might need these:

$io->fdopen (FD, MODE)

is like an ordinary except that its first parameter is not a filename but rather a
file handle name, an IO::Handle object, or a file descriptor number.

$io->opened

Returns true if the object is currently a valid file descriptor, false otherwise.

$io->getline

This works like <$io> described in except that it's more readable and
can be safely called in a list context but still returns just one line.

$io->getlines

This works like <$io> when called in a list context to read all the remaining lines in a file,
except that it's more readable. It will also croak() if accidentally called in a scalar context.

$io->ungetc (ORD)

Pushes a character with the given ordinal value back onto the given handle's input stream.
Only one character of pushback per handle is guaranteed.

$io->write (BUF, LEN [, OFFSET])

This is like found in C, that is it is the opposite of read. The wrapper for the perl
function is called .

$io->error

Returns a true value if the given handle has experienced any errors since it was opened or

Perl version 5.8.6 documentation - IO::Handle

Page 2http://perldoc.perl.org

$io->printf (FMT, [ARGS])
$io->stat
$io->sysread (BUF, LEN, [OFFSET])
$io->syswrite (BUF, [LEN, [OFFSET]])
$io->truncate (LEN)

$io->autoflush ([BOOL]) $|
$io->format_page_number([NUM]) $%
$io->format_lines_per_page([NUM]) $=
$io->format_lines_left([NUM]) $-
$io->format_name([STR]) $~
$io->format_top_name([STR]) $^
$io->input_line_number([NUM]) $.

IO::Handle->format_line_break_characters([STR]) $:
IO::Handle->format_formfeed([STR]) $^L
IO::Handle->output_field_separator([STR]) $,
IO::Handle->output_record_separator([STR]) $\

IO::Handle->input_record_separator([STR]) $/

perlvar

"I/O Operators" in perlop

IO::Handle

fdopen open

write write
write format_write

since the last call to , or if the handle is invalid. It only returns false for a valid
handle with no outstanding errors.

$io->clearerr

Clear the given handle's error indicator. Returns -1 if the handle is invalid, 0 otherwise.

$io->sync

synchronizes a file's in-memory state with that on the physical medium. does not
operate at the perlio api level, but operates on the file descriptor (similar to sysread, sysseek
and systell). This means that any data held at the perlio api level will not be synchronized. To
synchronize data that is buffered at the perlio api level you must use the flush method. is
not implemented on all platforms. Returns "0 but true" on success, on error, for
an invalid handle. See .

$io->flush

causes perl to flush any buffered data at the perlio api level. Any unread data in the
buffer will be discarded, and any unwritten data will be written to the underlying file descriptor.
Returns "0 but true" on success, on error.

$io->printflush (ARGS)

Turns on autoflush, print ARGS and then restores the autoflush status of the
object. Returns the return value from print.

$io->blocking ([BOOL])

If called with an argument will turn on non-blocking IO if is false, and turn it
off if is true.

will return the value of the previous setting, or the current setting if is not
given.

If an error occurs will return undef and will be set.

If the C functions setbuf() and/or setvbuf() are available, then and
set the buffering policy for an IO::Handle. The calling sequences for the

Perl functions are the same as their C counterparts--including the constants , , and
for setvbuf()--except that the buffer parameter specifies a scalar variable to use as a buffer.

You should only change the buffer before any I/O, or immediately after calling flush.

WARNING: The IO::Handle::setvbuf() is not available by default on Perls 5.8.0 and later because
setvbuf() is rather specific to using the stdio library, while Perl prefers the new perlio subsystem
instead.

WARNING: A variable used as a buffer by or in any way
until the IO::Handle is closed or or is called again, or memory corruption may
result! Remember that the order of global destruction is undefined, so even if your buffer variable
remains in scope until program termination, it may be undefined before the file IO::Handle is closed.
Note that you need to import the constants , , and explicitly. Like C, setbuf
returns nothing. setvbuf returns "0 but true", on success, on failure.

Lastly, there is a special method for working under and setuid/gid scripts:

$io->untaint

Marks the object as taint-clean, and as such data read from it will also be considered
taint-clean. Note that this is a very trusting action to take, and appropriate consideration for the
data source and potential vulnerability should be kept in mind. Returns 0 on success, -1 if
setting the taint-clean flag failed. (eg invalid handle)

Perl version 5.8.6 documentation - IO::Handle

Page 3http://perldoc.perl.org

clearerr

sync sync

sync
undef undef

flush

undef

IO::Handle

blocking BOOL
BOOL

blocking BOOL

blocking $!

IO::Handle::setbuf
IO::Handle::setvbuf

_IOFBF _IOLBF
_IONBF

setbuf setvbuf
setbuf setvbuf

_IOFBF _IOLBF _IONBF
undef

fsync(3c)

must not be modified

-T

An object is a reference to a symbol/GLOB reference (see the package). Some
modules that inherit from may want to keep object related variables in the hash table
part of the GLOB. In an attempt to prevent modules trampling on each other I propose the that any
such module should prefix its variables with its own name separated by _'s. For example the
IO::Socket module keeps a variable in 'io_socket_timeout'.

, ,

Due to backwards compatibility, all filehandles resemble objects of class , or actually
classes derived from that class. They actually aren't. Which means you can't derive your own class
from and inherit those methods.

Derived from FileHandle.pm by Graham Barr < >

Perl version 5.8.6 documentation - IO::Handle

Page 4http://perldoc.perl.org

NOTE

SEE ALSO

BUGS

HISTORY

IO::Handle Symbol
IO::Handle

timeout

IO::Handle

IO::Handle

perlfunc "I/O Operators" in perlop IO::File

gbarr@pobox.com

