
Getopt::Long - Extended processing of command line options

The Getopt::Long module implements an extended getopt function called GetOptions(). This function
adheres to the POSIX syntax for command line options, with GNU extensions. In general, this means
that options have long names instead of single letters, and are introduced with a double dash "--".
Support for bundling of command line options, as was the case with the more traditional single-letter
approach, is provided but not enabled by default.

Command line operated programs traditionally take their arguments from the command line, for
example filenames or other information that the program needs to know. Besides arguments, these
programs often take command line as well. Options are not necessary for the program to
work, hence the name 'option', but are used to modify its default behaviour. For example, a program
could do its job quietly, but with a suitable option it could provide verbose information about what it
did.

Command line options come in several flavours. Historically, they are preceded by a single dash ,
and consist of a single letter.

Usually, these single-character options can be bundled:

Options can have values, the value is placed after the option character. Sometimes with whitespace
in between, sometimes not:

Due to the very cryptic nature of these options, another style was developed that used long names.
So instead of a cryptic one could use the more descriptive . To distinguish between a
bundle of single-character options and a long one, two dashes are used to precede the option name.
Early implementations of long options used a plus instead. Also, option values could be specified
either like

or

The form is now obsolete and strongly deprecated.

Perl version 5.8.6 documentation - Getopt::Long

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

Command Line Options, an Introduction

use Getopt::Long;
my $data = "file.dat";
my $length = 24;
my $verbose;
$result = GetOptions ("length=i" => \$length, # numeric

"file=s" => \$data, # string
"verbose" => \$verbose); # flag

-l -a -c

-lac

-s 24 -s24

--size=24

--size 24

options

-

-l --long

+

+

Getopt::Long is the Perl5 successor of . This was the first Perl module that provided
support for handling the new style of command line options, hence the name Getopt::Long. This
module also supports single-character options and bundling. In this case, the options are restricted to
alphabetic characters only, and the characters and .

To use Getopt::Long from a Perl program, you must include the following line in your Perl program:

This will load the core of the Getopt::Long module and prepare your program for using it. Most of the
actual Getopt::Long code is not loaded until you really call one of its functions.

In the default configuration, options names may be abbreviated to uniqueness, case does not matter,
and a single dash is sufficient, even for long option names. Also, options may be placed between
non-option arguments. See for more details on how to configure
Getopt::Long.

The most simple options are the ones that take no values. Their mere presence on the command line
enables the option. Popular examples are:

Handling simple options is straightforward:

The call to GetOptions() parses the command line arguments that are present in and sets the
option variable to the value if the option did occur on the command line. Otherwise, the option
variable is not touched. Setting the option value to true is often called the option.

The option name as specified to the GetOptions() function is called the option . Later we'll
see that this specification can contain more than just the option name. The reference to the variable is
called the option .

GetOptions() will return a true value if the command line could be processed successfully. Otherwise,
it will write error messages to STDERR, and return a false result.

Getopt::Long supports two useful variants of simple options: options and
options.

A negatable option is specified with an exclamation mark after the option name:

Now, using on the command line will enable , as expected. But it is also
allowed to use , which will disable by setting its value to . Using a suitable
default value, the program can find out whether is false by default, or disabled by using

.

An incremental option is specified with a plus after the option name:

Perl version 5.8.6 documentation - Getopt::Long

Page 2http://perldoc.perl.org

Getting Started with Getopt::Long
newgetopt.pl

? -

@ARGV
1

!

--verbose $verbose
--noverbose $verbose 0

$verbose
--noverbose

+

use Getopt::Long;

--all --verbose --quiet --debug

my $verbose = ’’; # option variable with default value (false)
my $all = ’’; # option variable with default value (false)
GetOptions (’verbose’ => \$verbose, ’all’ => \$all);

my $verbose = ’’; # option variable with default value (false)
GetOptions (’verbose!’ => \$verbose);

my $verbose = ’’; # option variable with default value (false)

Configuring Getopt::Long

enabling

specification

destination

negatable incremental

Simple options

A little bit less simple options

Using on the command line will increment the value of . This way the program
can keep track of how many times the option occurred on the command line. For example, each
occurrence of could increase the verbosity level of the program.

Usually programs take command line options as well as other arguments, for example, file names. It
is good practice to always specify the options first, and the other arguments last. Getopt::Long will,
however, allow the options and arguments to be mixed and 'filter out' all the options before passing
the rest of the arguments to the program. To stop Getopt::Long from processing further arguments,
insert a double dash on the command line:

In this example, will be treated as an option, but passed to the program unharmed, in
.

For options that take values it must be specified whether the option value is required or not, and what
kind of value the option expects.

Three kinds of values are supported: integer numbers, floating point numbers, and strings.

If the option value is required, Getopt::Long will take the command line argument that follows the
option and assign this to the option variable. If, however, the option value is specified as optional, this
will only be done if that value does not look like a valid command line option itself.

In the option specification, the option name is followed by an equals sign and the letter . The
equals sign indicates that this option requires a value. The letter indicates that this value is an
arbitrary string. Other possible value types are for integer values, and for floating point values.
Using a colon instead of the equals sign indicates that the option value is optional. In this case, if no
suitable value is supplied, string valued options get an empty string assigned, while numeric
options are set to .

Options sometimes take several values. For example, a program could use multiple directories to
search for library files:

To accomplish this behaviour, simply specify an array reference as the destination for the option:

Alternatively, you can specify that the option can have multiple values by adding a "@", and pass a
scalar reference as the destination:

Used with the example above, (or) would contain two strings upon
completion: and , in that order. It is also possible to specify that only
integer or floating point numbers are acceptible values.

Perl version 5.8.6 documentation - Getopt::Long

Page 3http://perldoc.perl.org

GetOptions (’verbose+’ => \$verbose);

--size 24 -- --all

my $tag = ’’; # option variable with default value
GetOptions (’tag=s’ => \$tag);

--library lib/stdlib --library lib/extlib

GetOptions ("library=s" => \@libfiles);

GetOptions ("library=s@" => \$libfiles);

--verbose $verbose

--verbose

--

--all
@ARGV

= s
s

i f
:

’’
0

@libfiles @$libfiles
"lib/srdlib" "lib/extlib"

Mixing command line option with other arguments

Options with values

Options with multiple values

not

Often it is useful to allow comma-separated lists of values as well as multiple occurrences of the
options. This is easy using Perl's split() and join() operators:

Of course, it is important to choose the right separator string for each purpose.

If the option destination is a reference to a hash, the option will take, as value, strings of the form
. The value will be stored with the specified key in the hash.

Alternatively you can use:

When used with command line options:

the hash (or) will contain two keys, with value and
with value . It is also possible to specify that only integer or floating point numbers are
acceptible values. The keys are always taken to be strings.

Ultimate control over what should be done when (actually: each time) an option is encountered on the
command line can be achieved by designating a reference to a subroutine (or an anonymous
subroutine) as the option destination. When GetOptions() encounters the option, it will call the
subroutine with two or three arguments. The first argument is the name of the option. For a scalar or
array destination, the second argument is the value to be stored. For a hash destination, the second
arguments is the key to the hash, and the third argument the value to be stored. It is up to the
subroutine to store the value, or do whatever it thinks is appropriate.

A trivial application of this mechanism is to implement options that are related to each other. For
example:

Here and control the same variable , but with opposite values.

If the subroutine needs to signal an error, it should call die() with the desired error message as its
argument. GetOptions() will catch the die(), issue the error message, and record that an error result
must be returned upon completion.

If the text of the error message starts with an exclamantion mark it is interpreted specially by
GetOptions(). There is currently one special command implemented: will cause
GetOptions() to stop processing options, as if it encountered a double dash .

Often it is user friendly to supply alternate mnemonic names for options. For example
could be an alternate name for . Alternate names can be included in the option
specification, separated by vertical bar characters. To implement the above example:

Perl version 5.8.6 documentation - Getopt::Long

Page 4http://perldoc.perl.org

GetOptions ("library=s" => \@libfiles);
@libfiles = split(/,/,join(’,’,@libfiles));

GetOptions ("define=s" => \%defines);

GetOptions ("define=s%" => \$defines);

--define os=linux --define vendor=redhat

my $verbose = ’’; # option variable with default value (false)
GetOptions (’verbose’ => \$verbose,

’quiet’ => sub { $verbose = 0 });

Options with hash values

User-defined subroutines to handle options

Options with multiple names

key
value=

%defines %$defines "os" "linux "vendor"
"redhat"

--verbose --quiet $verbose

!
die("!FINISH")

--

--height
--length

|

The first name is called the name, the other names are called .

Multiple alternate names are possible.

Without additional configuration, GetOptions() will ignore the case of option names, and allow the
options to be abbreviated to uniqueness.

This call will allow and for the length option, but requires a least and for the
head and height options.

Each option specifier consists of two parts: the name specification and the argument specification.

The name specification contains the name of the option, optionally followed by a list of alternative
names separated by vertical bar characters.

The argument specification is optional. If omitted, the option is considered boolean, a value of 1 will
be assigned when the option is used on the command line.

The argument specification can be

!

The option does not take an argument and may be negated, i.e. prefixed by "no". E.g.
will allow (a value of 1 will be assigned) and and (a value of 0 will
be assigned). If the option has aliases, this applies to the aliases as well.

Using negation on a single letter option when bundling is in effect is pointless and will result in
a warning.

+

The option does not take an argument and will be incremented by 1 every time it appears on
the command line. E.g. , when used with , will increment
the value three times, resulting in a value of 3 (provided it was 0 or undefined at first).

The specifier is ignored if the option destination is not a scalar.

= []

The option requires an argument of the given type. Supported types are:

s

String. An arbitrary sequence of characters. It is valid for the argument to start with
or .

i

Integer. An optional leading plus or minus sign, followed by a sequence of digits.

o

Extended integer, Perl style. This can be either an optional leading plus or minus sign,
followed by a sequence of digits, or an octal string (a zero, optionally followed by '0',
'1', .. '7'), or a hexadecimal string (followed by '0' .. '9', 'a' .. 'f', case insensitive), or a

Perl version 5.8.6 documentation - Getopt::Long

Page 5http://perldoc.perl.org

GetOptions (’length|height=f’ => \$length);

GetOptions (’length|height=f’ => \$length, "head" => \$head);

length option name is "length"
length|size|l name is "length", aliases are "size" and "l"

primary aliases

type desttype

Case and abbreviations

Summary of Option Specifications

--l --L --hea --hei

"foo!"
--foo --nofoo --no-foo

"more+" --more --more --more

+

-
--

0x

binary string (followed by a series of '0' and '1').

f

Real number. For example , and so on.

The can be or to specify that the option is list or a hash valued. This is only
needed when the destination for the option value is not otherwise specified. It should be
omitted when not needed.

: []

Like , but designates the argument as optional. If omitted, an empty string will be assigned to
string values options, and the value zero to numeric options.

Note that if a string argument starts with or , it will be considered an option on itself.

: []

Like , but if the value is omitted, the will be assigned.

: + []

Like , but if the value is omitted, the current value for the option will be incremented.

Getopt::Long can be used in an object oriented way as well:

Configuration options can be passed to the constructor:

Getopt::Long is thread safe when using ithreads as of Perl 5.8. It is thread safe when using the
older (experimental and now obsolete) threads implementation that was added to Perl 5.005.

Getopt::Long encourages the use of Pod::Usage to produce help messages. For example:

Perl version 5.8.6 documentation - Getopt::Long

Page 6http://perldoc.perl.org

0b

3.14 -6.23E24

@ %

=

- --

:i

:i

desttype

type desttype

number desttype

number

desttype

not

Advanced Possibilities
Object oriented interface

Thread Safety

Documentation and help texts

use Getopt::Long;
$p = new Getopt::Long::Parser;
$p->configure(...configuration options...);
if ($p->getoptions(...options descriptions...)) ...

$p = new Getopt::Long::Parser
config => [...configuration options...];

use Getopt::Long;
use Pod::Usage;

my $man = 0;
my $help = 0;

GetOptions(’help|?’ => \$help, man => \$man) or pod2usage(2);
pod2usage(1) if $help;
pod2usage(-exitstatus => 0, -verbose => 2) if $man;

__END__

=head1 NAME

See for details.

Sometimes, for example when there are a lot of options, having a separate variable for each of them
can be cumbersome. GetOptions() supports, as an alternative mechanism, storing options in a hash.

To obtain this, a reference to a hash must be passed to GetOptions(). For each
option that is specified on the command line, the option value will be stored in the hash with the option
name as key. Options that are not actually used on the command line will not be put in the hash, on
other words, (or defined()) can be used to test if an option was used. The
drawback is that warnings will be issued if the program runs under and uses

without testing with exists() or defined() first.

For options that take list or hash values, it is necessary to indicate this by appending an or sign
after the type:

Perl version 5.8.6 documentation - Getopt::Long

Page 7http://perldoc.perl.org

sample - Using Getopt::Long and Pod::Usage

=head1 SYNOPSIS

sample [options] [file ...]

Options:
-help brief help message
-man full documentation

=head1 OPTIONS

=over 8

=item B<-help>

Print a brief help message and exits.

=item B<-man>

Prints the manual page and exits.

=back

=head1 DESCRIPTION

B<This program> will read the given input file(s) and do someting
useful with the contents thereof.

=cut

my %h = ();
GetOptions (\%h, ’length=i’); # will store in $h{length}

GetOptions (\%h, ’colours=s@’); # will push to @{$h{colours}}

Pod::Usage

as the first argument

Storing options in a hash

exists($h{option})
use strict

$h{option}

@ %

To make things more complicated, the hash may contain references to the actual destinations, for
example:

This example is fully equivalent with:

Any mixture is possible. For example, the most frequently used options could be stored in variables
while all other options get stored in the hash:

With bundling it is possible to set several single-character options at once. For example if , and
are all valid options,

would set all three.

Getopt::Long supports two levels of bundling. To enable bundling, a call to Getopt::Long::Configure is
required.

The first level of bundling can be enabled with:

Configured this way, single-character options can be bundled but long options always start with
a double dash to avoid abiguity. For example, when , , and are all valid options,

would set , and , but

would set .

The second level of bundling lifts this restriction. It can be enabled with:

Now, would set the option .

When any level of bundling is enabled, option values may be inserted in the bundle. For example:

Perl version 5.8.6 documentation - Getopt::Long

Page 8http://perldoc.perl.org

my $len = 0;
my %h = (’length’ => \$len);
GetOptions (\%h, ’length=i’); # will store in $len

my $len = 0;
GetOptions (’length=i’ => \$len); # will store in $len

my $verbose = 0; # frequently referred
my $debug = 0; # frequently referred
my %h = (’verbose’ => \$verbose, ’debug’ => \$debug);
GetOptions (\%h, ’verbose’, ’debug’, ’filter’, ’size=i’);
if ($verbose) { ... }
if (exists $h{filter}) { ... option ’filter’ was specified ... }

-vax

Getopt::Long::Configure ("bundling");

-vax

--vax

Getopt::Long::Configure ("bundling_override");

-h24w80

Bundling
a v x

-- vax a v x

a v x

vax

-vax vax

must

is equivalent to

When configured for bundling, single-character options are matched case sensitive while long options
are matched case insensitive. To have the single-character options matched case insensitive as well,
use:

It goes without saying that bundling can be quite confusing.

Normally, a lone dash on the command line will not be considered an option. Option processing will
terminate (unless "permute" is configured) and the dash will be left in .

It is possible to get special treatment for a lone dash. This can be achieved by adding an option
specification with an empty name, for example:

A lone dash on the command line will now be a legal option, and using it will set variable .

A special option 'name' can be used to designate a subroutine to handle non-option arguments.
When GetOptions() encounters an argument that does not look like an option, it will immediately call
this subroutine and passes it one parameter: the argument name.

For example:

When applied to the following command line:

This will call while is , while is , and
while is .

This feature requires configuration option , see section .

Getopt::Long can be configured by calling subroutine Getopt::Long::Configure(). This subroutine takes
a list of quoted strings, each specifying a configuration option to be enabled, e.g. , or
disabled, e.g. . Case does not matter. Multiple calls to Configure() are possible.

Alternatively, as of version 2.24, the configuration options may be passed together with the
statement:

The following options are available:

default

This option causes all configuration options to be reset to their default values.

Perl version 5.8.6 documentation - Getopt::Long

Page 9http://perldoc.perl.org

-h 24 -w 80

Getopt::Long::Configure ("bundling", "ignorecase_always");

GetOptions (’’ => \$stdio);

my $width = 80;
sub process { ... }
GetOptions (’width=i’ => \$width, ’<>’ => \&process);

arg1 --width=72 arg2 --width=60 arg3

use Getopt::Long qw(:config no_ignore_case bundling);

The lonesome dash

Argument callback

-
@ARGV

$stdio

<>

process("arg1") $width 80 process("arg2") $width 72
process("arg3") $width 60

ignore_case
no_ignore_case

use

permute Configuring Getopt::Long

Configuring Getopt::Long

posix_default

This option causes all configuration options to be reset to their default values
as if the environment variable POSIXLY_CORRECT had been set.

auto_abbrev

Allow option names to be abbreviated to uniqueness. Default is enabled unless
environment variable POSIXLY_CORRECT has been set, in which case

is disabled.

getopt_compat

Allow to start options. Default is enabled unless environment variable
POSIXLY_CORRECT has been set, in which case is
disabled.

gnu_compat

controls whether is allowed, and what it should do.
Without , gives an error. With , will
give option and empty value. This is the way GNU getopt_long() does it.

gnu_getopt

This is a short way of setting
. With , command line handling should be

fully compatible with GNU getopt_long().

require_order

Whether command line arguments are allowed to be mixed with options.
Default is disabled unless environment variable POSIXLY_CORRECT has
been set, in which case is enabled.

See also , which is the opposite of .

permute

Whether command line arguments are allowed to be mixed with options.
Default is enabled unless environment variable POSIXLY_CORRECT has
been set, in which case is disabled. Note that is the
opposite of .

If is enabled, this means that

is equivalent to

If an argument callback routine is specified, will always be empty upon
succesful return of GetOptions() since all options have been processed. The
only exception is when is used:

This will call the callback routine for arg1 and arg2, and then terminate
GetOptions() leaving in .

If is enabled, options processing terminates when the first
non-option is encountered.

is equivalent to

Perl version 5.8.6 documentation - Getopt::Long

Page 10http://perldoc.perl.org

auto_abbrev

+
getopt_compat

gnu_compat --opt=
gnu_compat --opt= gnu_compat --opt=

opt

gnu_compat bundling permute
no_getopt_compat gnu_getopt

require_order

permute require_order

permute permute
require_order

permute

@ARGV

--

"arg2" @ARGV

require_order

--foo arg1 --bar arg2 arg3

--foo --bar arg1 arg2 arg3

--foo arg1 --bar arg2 -- arg3

--foo arg1 --bar arg2 arg3

If is also enabled, options processing will terminate at the first
unrecognized option, or non-option, whichever comes first.

bundling (default: disabled)

Enabling this option will allow single-character options to be bundled. To
distinguish bundles from long option names, long options be introduced
with and bundles with .

Note that, if you have options , and , and auto_abbrev enabled,
possible arguments and option settings are:

The suprising part is that sets option (due to auto completion), not .

Note: disabling also disables .

bundling_override (default: disabled)

If is enabled, bundling is enabled as with
but now long option names override option bundles.

Note: disabling also disables .

Using option bundling can easily lead to unexpected results, especially
when mixing long options and bundles. Caveat emptor.

ignore_case (default: enabled)

If enabled, case is ignored when matching long option names. If, however,
bundling is enabled as well, single character options will be treated
case-sensitive.

With , option specifications for options that only differ in case,
e.g., and , will be flagged as duplicates.

Note: disabling also disables .

ignore_case_always (default: disabled)

When bundling is in effect, case is ignored on single-character options also.

Note: disabling also disables .

auto_version (default:disabled)

Automatically provide support for the option if the application did not
specify a handler for this option itself.

Getopt::Long will provide a standard version message that includes the
program name, its version (if $main::VERSION is defined), and the versions of
Getopt::Long and Perl. The message will be written to standard output and
processing will terminate.

will be enabled if the calling program explicitly specified a
version number higher than 2.32 in the or statement.

auto_help (default:disabled)

Automatically provide support for the and options if the application did
not specify a handler for this option itself.

Perl version 5.8.6 documentation - Getopt::Long

Page 11http://perldoc.perl.org

--foo -- arg1 --bar arg2 arg3

using argument sets option(s)
--
-a, --a a
-l, --l l
-al, -la, -ala, -all,... a, l
--al, --all all

pass_through

-- -

a l all

--a a all

bundling bundling_override

bundling_override bundling

bundling_override bundling

ignore_case
"foo" "Foo"

ignore_case ignore_case_always

ignore_case_always ignore_case

auto_version
use require

must

Note:

--version

--help -?

Getopt::Long will provide a help message using module . The
message, derived from the SYNOPSIS POD section, will be written to standard
output and processing will terminate.

will be enabled if the calling program explicitly specified a version
number higher than 2.32 in the or statement.

pass_through (default: disabled)

Options that are unknown, ambiguous or supplied with an invalid option value
are passed through in instead of being flagged as errors. This makes it
possible to write wrapper scripts that process only part of the user supplied
command line arguments, and pass the remaining options to some other
program.

If is enabled, options processing will terminate at the first
unrecognized option, or non-option, whichever comes first. However, if

is enabled instead, results can become confusing.

Note that the options terminator (default), if present, will also be passed
through in .

prefix

The string that starts options. If a constant string is not sufficient, see
.

prefix_pattern

A Perl pattern that identifies the strings that introduce options. Default is
unless environment variable POSIXLY_CORRECT has been set,

in which case it is .

debug (default: disabled)

Enable debugging output.

VersionMessage

This subroutine provides a standard version message. Its argument can be:

A string containing the text of a message to print printing the standard
message.

A numeric value corresponding to the desired exit status.

A reference to a hash.

If more than one argument is given then the entire argument list is assumed to be a hash. If a
hash is supplied (either as a reference or as a list) it should contain one or more elements with
the following keys:

The text of a message to print immediately prior to printing the program's usage
message.

The desired exit status to pass to the function. This should be an integer, or else
the string "NOEXIT" to indicate that control should simply be returned without
terminating the invoking process.

Perl version 5.8.6 documentation - Getopt::Long

Page 12http://perldoc.perl.org

Pod::Usage

before

auto_help
use require

@ARGV

require_order

permute

--
@ARGV

prefix_pattern

(--|-|\+)
(--|-)

-message

-msg

-exitval

-output

Exportable Methods

exit()

A reference to a filehandle, or the pathname of a file to which the usage message
should be written. The default is unless the exit value is less than 2 (in
which case the default is).

You cannot tie this routine directly to an option, e.g.:

Use this instead:

HelpMessage

This subroutine produces a standard help message, derived from the program's POD section
SYNOPSIS using . It takes the same arguments as VersionMessage(). In
particular, you cannot tie it directly to an option, e.g.:

Use this instead:

Configuration errors and errors in the option definitions are signalled using die() and will terminate the
calling program unless the call to Getopt::Long::GetOptions() was embedded in , or
die() was trapped using .

GetOptions returns true to indicate success. It returns false when the function detected one or more
errors during option parsing. These errors are signalled using warn() and can be trapped with

.

The earliest development of started in 1990, with Perl version 4. As a result, its
development, and the development of Getopt::Long, has gone through several stages. Since
backward compatibility has always been extremely important, the current version of Getopt::Long still
supports a lot of constructs that nowadays are no longer necessary or otherwise unwanted. This
section describes briefly some of these 'features'.

When no destination is specified for an option, GetOptions will store the resultant value in a global
variable named , where is the primary name of this option. When a progam executes
under (recommended), these variables must be pre-declared with our() or .

To yield a usable Perl variable, characters that are not part of the syntax for variables are translated
to underscores. For example, will set the variable

. Note that this variable resides in the namespace of the calling
program, not necessarily . For example:

with command line "-size 10 -sizes 24 -sizes 48" will perform the equivalent of the assignments

Perl version 5.8.6 documentation - Getopt::Long

Page 13http://perldoc.perl.org

*STDERR
*STDOUT

eval { ... }
$SIG{__DIE__}

$SIG{__WARN__}

newgetopt.pl

opt_
use strict use vars

--fpp-struct-return
$opt_fpp_struct_return

main

GetOptions("version" => \&VersionMessage);

GetOptions("version" => sub { VersionMessage() });

GetOptions("help" => \&HelpMessage);

GetOptions("help" => sub { HelpMessage() });

our $opt_length = 0;
GetOptions (’length=i’); # will store in $opt_length

GetOptions ("size=i", "sizes=i@");

$opt_size = 10;
@opt_sizes = (24, 48);

Pod::Usage

XXX XXX

Return values and Errors

Legacy

Default destinations

A string of alternative option starter characters may be passed as the first argument (or the first
argument after a leading hash reference argument).

Now the command line may look like:

Note that to terminate options processing still requires a double dash .

GetOptions() will not interpret a leading as option starters if the next argument is a reference.
To force and as option starters, use . Confusing? Well,

anyway.

Previous versions of Getopt::Long used variables for the purpose of configuring. Although
manipulating these variables still work, it is strongly encouraged to use the routine that
was introduced in version 2.17. Besides, it is much easier.

That's why they're called 'options'.

The command line is not split by GetOptions, but by the command line interpreter (CLI). On Unix, this
is the shell. On Windows, it is COMMAND.COM or CMD.EXE. Other operating systems have other
CLIs.

It is important to know that these CLIs may behave different when the command line contains special
characters, in particular quotes or backslashes. For example, with Unix shells you can use single
quotes () and double quotes () to group words together. The following alternatives are equivalent
on Unix:

In case of doubt, insert the following statement in front of your Perl program:

to verify how your CLI passes the arguments to the program.

Are you running Windows, and did you write

(note the capital 'O')?

Perl version 5.8.6 documentation - Getopt::Long

Page 14http://perldoc.perl.org

my $len = 0;
GetOptions (’/’, ’length=i’ => $len);

/length 24 -- arg

"two words"
’two words’
two\ words

print STDERR (join("|",@ARGV),"\n");

use GetOpt::Long;

Alternative option starters

Configuration variables

GetOptions does not return a false result when an option is not supplied

GetOptions does not split the command line correctly

Undefined subroutine &main::GetOptions called

--

"<>"
"<" ">" "><"

Configure

’ "

using a starter argument is
strongly deprecated

Trouble Shooting

You can only obtain this using an alias, and Getopt::Long of at least version 2.13.

Johan Vromans <jvromans@squirrel.nl>

This program is Copyright 2003,1990 by Johan Vromans. This program is free software; you can
redistribute it and/or modify it under the terms of the Perl Artistic License or the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

If you do not have a copy of the GNU General Public License write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Perl version 5.8.6 documentation - Getopt::Long

Page 15http://perldoc.perl.org

How do I put a "-?" option into a Getopt::Long?

use Getopt::Long;
GetOptions ("help|?"); # -help and -? will both set $opt_help

AUTHOR

COPYRIGHT AND DISCLAIMER

