
B::Deparse - Perl compiler backend to produce perl code

[][][][][] [][]

B::Deparse is a backend module for the Perl compiler that generates perl source code, based on the
internal compiled structure that perl itself creates after parsing a program. The output of B::Deparse
won't be exactly the same as the original source, since perl doesn't keep track of comments or
whitespace, and there isn't a one-to-one correspondence between perl's syntactical constructions and
their compiled form, but it will often be close. When you use the option, the output also includes
parentheses even when they are not required by precedence, which can make it easy to see if perl is
parsing your expressions the way you intended.

While B::Deparse goes to some lengths to try to figure out what your original program was doing,
some parts of the language can still trip it up; it still fails even on some parts of Perl's own test suite. If
you encounter a failure other than the most common ones described in the BUGS section below, you
can help contribute to B::Deparse's ongoing development by submitting a bug report with a small
example.

As with all compiler backend options, these must follow directly after the '-MO=Deparse', separated by
a comma but not any white space.

Output data values (when they appear as constants) using Data::Dumper. Without this option,
B::Deparse will use some simple routines of its own for the same purpose. Currently,
Data::Dumper is better for some kinds of data (such as complex structures with sharing and
self-reference) while the built-in routines are better for others (such as odd floating-point
values).

Normally, B::Deparse deparses the main code of a program, and all the subs defined in the
same file. To include subs defined in other files, pass the option with the filename. You can
pass the option several times, to include more than one secondary file. (Most of the time
you don't want to use it at all.) You can also use this option to include subs which are defined
in the scope of a directive with two parameters.

Add '#line' declarations to the output based on the line and file locations of the original code.

Print extra parentheses. Without this option, B::Deparse includes parentheses in its output
only when they are needed, based on the structure of your program. With , it uses
parentheses (almost) whenever they would be legal. This can be useful if you are used to
LISP, or if you want to see how perl parses your input. If you say

will print

Perl version 5.8.6 documentation - B::Deparse

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

perl -MO=Deparse ,-d ,-f ,-p ,-q ,-l ,-s ,-x

-p

-d

-f

-f
-f

#line

-l

-p

-p

FILE LETTERS LEVEL prog.pl

FILE

if ($var & 0x7f == 65) {print "Gimme an A!"}
print ($which ? $a : $b), "\n";
$name = $ENV{USER} or "Bob";

if (($var & 0)) {
print(’Gimme an A!’)

};

B::Deparse,-p

which probably isn't what you intended (the is a sign that perl optimized away a
constant value).

Disable prototype checking. With this option, all function calls are deparsed as if no prototype
was defined for them. In other words,

will print

making clear how the parameters are actually passed to .

Expand double-quoted strings into the corresponding combinations of concatenation, uc,
ucfirst, lc, lcfirst, quotemeta, and join. For instance, print

as

Note that the expanded form represents the way perl handles such constructions internally --
this option actually turns off the reverse translation that B::Deparse usually does. On the other
hand, note that is not the same as : the former makes the value of $y
into a string before doing the assignment.

Tweak the style of B::Deparse's output. The letters should follow directly after the 's', with no
space or punctuation. The following options are available:

Cuddle , , and blocks. For example, print

instead of

The default is not to cuddle.

Perl version 5.8.6 documentation - B::Deparse

Page 2http://perldoc.perl.org

(print(($which ? $a : $b)), ’???’);
(($name = $ENV{’USER’}) or ’???’)

perl -MO=Deparse,-P -e ’sub foo (\@) { 1 } foo @x’

sub foo (\@) {
1;

}
&foo(\@x);

print "Hello, $world, @ladies, \u$gentlemen\E, \u\L$me!";

print ’Hello, ’ . $world . ’, ’ . join($", @ladies) . ’, ’
. ucfirst($gentlemen) . ’, ’ . ucfirst(lc $me . ’!’);

if (...) {
...

} else {
...

}

if (...) {
...

}
else {

...
}

’???’

foo

$x = "$y" $x = $y

elsif else continue

-P

-q

-s

C

LETTERS

Indent lines by multiples of columns. The default is 4 columns.

Use tabs for each 8 columns of indent. The default is to use only spaces. For instance,
if the style options are , a line that's indented 3 times will be preceded by one tab
and four spaces; if the options were , the same line would be preceded by three
tabs.

Print for the value of a constant that can't be determined because it was
optimized away (mnemonic: this happens when a constant is used in oid context).
The end of the string is marked by a period. The string should be a valid perl
expression, generally a constant. Note that unless it's a number, it probably needs to
be quoted, and on a command line quotes need to be protected from the shell. Some
conventional values include 0, 1, 42, '', 'foo', and 'Useless use of constant omitted'
(which may need to be or something similar
depending on your shell). The default is '???'. If you're using B::Deparse on a module
or other file that's require'd, you shouldn't use a value that evaluates to false, since the
customary true constant at the end of a module will be in void context when the file is
compiled as a main program.

Expand conventional syntax constructions into equivalent ones that expose their internal
operation. should be a digit, with higher values meaning more expansion. As with ,
this actually involves turning off special cases in B::Deparse's normal operations.

If is at least 3, loops will be translated into equivalent while loops with continue
blocks; for instance

turns into

Note that in a few cases this translation can't be perfectly carried back into the source code --
if the loop's initializer declares a my variable, for instance, it won't have the correct scope
outside of the loop.

If is at least 5, declarations will be translated into blocks containing calls to
and ; for instance,

turns into

Perl version 5.8.6 documentation - B::Deparse

Page 3http://perldoc.perl.org

i

T

-si4T
-si8T

v .

v

-sv"'Useless use of constant omitted'."

-x

-q

NUMBER

NUMBER

STRING

STRING

LEVEL

LEVEL

LEVEL

LEVEL

for

use BEGIN
require import

for ($i = 0; $i < 10; ++$i) {
print $i;

}

$i = 0;
while ($i < 10) {

print $i;
} continue {

++$i
}

use strict ’refs’;

sub BEGIN {
require strict;
do {

’strict’->import(’refs’)
};

If is at least 7, statements will be translated into equivalent expressions using ,
and ; for instance

turns into

Long sequences of elsifs will turn into nested ternary operators, which B::Deparse doesn't
know how to indent nicely.

B::Deparse can also be used on a sub-by-sub basis from other perl programs.

Create an object to store the state of a deparsing operation and any options. The options are the
same as those that can be given on the command line (see); options that are separated by
commas after should be given as separate strings. Some options, like , don't make
sense for a single subroutine, so don't pass them.

The compilation of a subroutine can be affected by a few compiler directives, . These are:

use strict;

use warnings;

Assigning to the special variable $[

use integer;

use bytes;

Perl version 5.8.6 documentation - B::Deparse

Page 4http://perldoc.perl.org

}

print ’hi’ if $nice;
if ($nice) {

print ’hi’;
}
if ($nice) {

print ’hi’;
} else {

print ’bye’;
}

$nice and print ’hi’;
$nice and do { print ’hi’ };
$nice ? do { print ’hi’ } : do { print ’bye’ };

use B::Deparse;
$deparse = B::Deparse->new("-p", "-sC");
$body = $deparse->coderef2text(\&func);
eval "sub func $body"; # the inverse operation

$deparse = B::Deparse->new(OPTIONS)

$deparse->ambient_pragmas(strict => ’all’, ’$[’ => $[);

LEVEL

OPTIONS

if &&
?: do {}

USING B::Deparse AS A MODULE
Synopsis

Description

new

ambient_pragmas

-MO=Deparse -u

pragmas

use utf8;

use re;

Ordinarily, if you use B::Deparse on a subroutine which has been compiled in the presence of one or
more of these pragmas, the output will include statements to turn on the appropriate directives. So if
you then compile the code returned by coderef2text, it will behave the same way as the subroutine
which you deparsed.

However, you may know that you intend to use the results in a particular context, where some
pragmas are already in scope. In this case, you use the method to describe the
assumptions you wish to make.

Not all of the options currently have any useful effect. See for more details.

The parameters it accepts are:

strict

Takes a string, possibly containing several values separated by whitespace. The special
values "all" and "none" mean what you'd expect.

$[

Takes a number, the value of the array base $[.

bytes

utf8

integer

If the value is true, then the appropriate pragma is assumed to be in the ambient scope,
otherwise not.

re

Takes a string, possibly containing a whitespace-separated list of values. The values "all" and
"none" are special. It's also permissible to pass an array reference here.

warnings

Takes a string, possibly containing a whitespace-separated list of values. The values "all" and
"none" are special, again. It's also permissible to pass an array reference here.

If one of the values is the string "FATAL", then all the warnings in that list will be considered
fatal, just as with the pragma itself. Should you need to specify that some warnings
are fatal, and others are merely enabled, you can pass the parameter twice:

See for more information about lexical warnings.

hint_bits

warning_bits

These two parameters are used to specify the ambient pragmas in the format used by the

Perl version 5.8.6 documentation - B::Deparse

Page 5http://perldoc.perl.org

ambient_pragmas

warnings
warnings

BUGS

perllexwarn

$deparse->ambient_pragmas(strict => ’subs refs’);

$deparser->ambient_pragmas(re => ’eval’);

$deparser->ambient_pragmas(warnings => [qw[void io]]);

$deparser->ambient_pragmas(
warnings => ’all’,
warnings => [FATAL => qw/void io/],

);

special variables $^H and ${^WARNING_BITS}.

They exist principally so that you can write code like:

which specifies that the ambient pragmas are exactly those which are in scope at the point of
calling.

Return source code for the body of a subroutine (a block, optionally preceded by a prototype in
parens), given a reference to the sub. Because a subroutine can have no names, or more than one
name, this method doesn't return a complete subroutine definition -- if you want to eval the result, you
should prepend "sub subname ", or "sub " for an anonymous function constructor. Unless the sub was
defined in the main:: package, the code will include a package declaration.

The only pragmas to be completely supported are: , ,
, and . (, which behaves like a pragma, is also supported.)

Excepting those listed above, we're currently unable to guarantee that B::Deparse will produce
a pragma at the correct point in the program. (Specifically, pragmas at the beginning of a
block often appear right before the start of the block instead.) Since the effects of pragmas are
often lexically scoped, this can mean that the pragma holds sway over a different portion of
the program than in the input file.

In fact, the above is a specific instance of a more general problem: we can't guarantee to
produce BEGIN blocks or declarations in exactly the right place. So if you use a module
which affects compilation (such as by over-riding keywords, overloading constants or
whatever) then the output code might not work as intended.

This is the most serious outstanding problem, and will require some help from the Perl core to
fix.

If a keyword is over-ridden, and your program explicitly calls the built-in version by using
CORE::keyword, the output of B::Deparse will not reflect this. If you run the resulting code, it
will call the over-ridden version rather than the built-in one. (Maybe there should be an option
to print keyword calls as .)

Some constants don't print correctly either with or without . For instance, neither B::Deparse
nor Data::Dumper know how to print dual-valued scalars correctly, as in:

An input file that uses source filtering probably won't be deparsed into runnable code, because
it will still include the declaration for the source filtering module, even though the code that
is produced is already ordinary Perl which shouldn't be filtered again.

Optimised away statements are rendered as '???'. This includes statements that have a
compile-time side-effect, such as the obscure

Perl version 5.8.6 documentation - B::Deparse

Page 6http://perldoc.perl.org

{ my ($hint_bits, $warning_bits);
BEGIN {($hint_bits, $warning_bits) = ($^H, ${^WARNING_BITS})}
$deparser->ambient_pragmas (

hint_bits => $hint_bits,
warning_bits => $warning_bits,
’$[’ => 0 + $[

); }

$body = $deparse->coderef2text(\&func)
$body = $deparse->coderef2text(sub ($$) { ... })

use constant E2BIG => ($!=7); $y = E2BIG; print $y, 0+$y;

coderef2text

BUGS
use warnings use strict ’refs’

use bytes use integer $[

use

CORE::namealways

-d

use

which is not, consequently, deparsed correctly.

There are probably many more bugs on non-ASCII platforms (EBCDIC).

Stephen McCamant <smcc@CSUA.Berkeley.EDU>, based on an earlier version by Malcolm Beattie
<mbeattie@sable.ox.ac.uk>, with contributions from Gisle Aas, James Duncan, Albert Dvornik, Robin
Houston, Dave Mitchell, Hugo van der Sanden, Gurusamy Sarathy, Nick Ing-Simmons, and Rafael
Garcia-Suarez.

Perl version 5.8.6 documentation - B::Deparse

Page 7http://perldoc.perl.org

my $x if 0;

AUTHOR

